Leonardo da Vinci Campus Alfred-Nobel-Straße 10 14641 Nauen

> Seminarkursarbeit Im Leistungskursfach Physik 3. Semester 2013 / 2014

Betreuender Lehrer: Herr Wohlfarth

Aufstieg eines Wetterballons

Heiko Lenz Sören Lenz Georg Drechsler

Alfred-Nobel-Straße 10 14641 Nauen

Stand: 21. Januar 2014

Inhaltsverzeichnis

1.	Einführung	3
	1.1 Die Idee	
	1.2 Vorgehensweise	3
2.	Realisierungsplanung	4
	2.1 Planung/ Organisation	4
	2.2 Finanzierung	7
	2.3 Internetseite	9
3.	Bedeutung der Messgrößen	10
	3.1 Temperatur	10
	3.2 Luftdruck	11
	3.3 Luftfeuchte	12
	3.4 Strahlung	15
	3.5 GPS	16
4.	Entwicklungsphase	18
	4.1 Bau des Strahlungssensors	18
	4.2 Mikrocontroller	21
	4.3 Programmierung	24
	4.3.1 Temperatur und Luftdruck	
	4.3.2 Luftfeuchte (mit Quelltexterklärung)	25
	4.3.3 Strahlung	28
	4.3.4 GPS	30
	4.4 Die Fertiggestellte Schaltung	33
	4.5 Stromversorgung	
	4.6 Kamera	34
	4.7 Bau der Sonde	35
	4.8 Testphase	36
	4.8.1 Strahlungssensor	36
	4.8.2 Strahlungsdetektor	38
	4.8.3 Schaltung	40
	4.8.4 GPS	41
	4.8.5 Kamera	41
5.	Flugvorbereitung	42
	5.1 Nutzlast	42
	5.2 Mengenberechnung des Ballongases	42
	5.3 Fallschirm	
	5.4 Flugantrag	43
6.	Der Ballonflug	
	6.1 Ballonstart	44
	6.2 Ballonlandung	45
7.	Auswertung	
	7.1 Temperatur	
	7.2 Luftdruck	
	7.3 Luftfeuchte	51
	7.4 Strahlung	54

8. Persönlicher Nutzen589. Literaturverzeichnis5910. Bildnachweis6211. Selbstständigkeitserklärung6312. Danksagung6413. Anhang65		7.5 GPS	. 55
10. Bildnachweis6211. Selbstständigkeitserklärung6312. Danksagung64	8.	Persönlicher Nutzen	. 58
11. Selbstständigkeitserklärung 63 12. Danksagung 64	9.	Literaturverzeichnis	. 59
12. Danksagung64	10.	Bildnachweis	62
12. Danksagung64	11.	Selbstständigkeitserklärung	63
13. Anhang			

1 Einführung

1.1 Die Idee

Auf die Idee, einen Wetterballon starten zu lassen, brachte uns die Leiterin des Nauener Jugendclubs *MIKADO e.V.*, Anke Bienwald. Zu dieser Zeit hatte noch keiner von uns ein Thema gefunden, da kam uns dieser Einfall gelegen. Georg engagiert sich ehrenamtlich im Jugendclub und informierte Heiko und Sören von der Idee. Ursprünglich war geplant, dass Jugendclubbesucher einen Wetterballon starten. Da aber Georg vorhatte, das gesamte Projekt mit der Seminararbeit zu verbinden, hat Frau Bienwald keinen weiteren Jugendlichen aus dem Jugendclub gefragt. Georg hat dann Heiko und Sören gebeten, am Projekt teilzunehmen.

Einen Wetterballon unter wissenschaftlichen Gesichtspunkten zu starten war sehr anspruchsvoll. Jedoch förderte es das wissenschaftliche Arbeiten und passte außerdem zu unserem Profil Luft- und Raumfahrt. So wurde das individuelle Arbeiten zu einer kollektiven Arbeit. Nach einigen Überlegungen entschieden wir uns dafür, Messungen der Temperatur, des Luftdrucks, der Luftfeuchte und der kosmischen Höhenstrahlung in Form von Gammastrahlung durchzuführen, da diese Größen auch von dem Deutschen Wetterdienst gemessen werden. Außerdem wollten wir das Wetter besser verstehen. Die Seminararbeit hat den Sinn, sich neues Wissen anzueignen. Dieses zeigte sich vor allem in dieser Arbeit.

1.2 Die Vorgehensweise

Im Januar 2013 trafen sich Anke Bienwald, Olaf Gründel, unser Schulleiter, Tilo Steinbach, zuständig für die Öffentlichkeitsarbeit unserer Schule, der Physik- und Astronomielehrer Erwin Wohlfarth und Steffen Glagow, ein Funkamateur aus Nauen und ehrenamtlicher Mitarbeiter im Jugendclub Nauen, mit Georg. Es wurde darüber diskutiert, wie wir den Wetterballonstart als ein gemeinsames Projekt zwischen unserer Schule, dem Jugendclub und dem *Deutschen Amateur-Radio-Club e.V. / Ortsverband Nauen (DARC)* durchführen können. Dabei hat Georg von der Idee gesprochen, dass wir das Projekt zu wissenschaftlichen Zwecken nutzen und eine Seminararbeit darüber schreiben können.

Im Februar 2013 wurde mit der Projektarbeit begonnen. Zunächst wurde überlegt, was der Zweck und das Ziel des Wetterballonfluges ist. Dann wurde überlegt, was benötigt wird, welche Anforderungen, rechtlich wie persönlich, an uns gestellt werden und was sonst noch möglich ist. Am Projekt mitgeholfen haben Dirk-Holger Lenz, von Beruf Software-Entwickler, Steffen Glagow und Erwin Wohlfarth. Wir trafen uns anfänglich zweimal im Monat, später wöchentlich. Mit jeder Sitzung wurde weiter- oder umgedacht, sodass ein Konzept schrittweise erkennbar wurde.

Den meisten Teil der Arbeit haben wir zusammen erarbeitet. Für ein schnelleres Ergebnis wurden die planerischen Aufgaben untereinander verteilt: Georg war für die Haftpflichtversicherung und Finanzierung verantwortlich. Heiko kümmerte sich um die Kamera und erstellte die Internetseite. Sören kümmerte sich um ein geeignetes Strahlungsmessgerät, den Flugantrag, die Startortsuche und verbleibende Fragen bezüglich der Luftfahrt.

2. Realisierungsplanung

2.1 Planung und Organisation

Zu Beginn musste geklärt werden, was überhaupt gebraucht wird. Dann sind Anfragen nötig. Wir planten, Temperatur, Luftfeuchte, Luftdruck, Strahlung und GPS zu messen. Die Messgeräte haben wir in einem Elektronikfachhandel in unserer Umgebung gekauft und einen Mikrocontroller konnte uns die Schule geben. Das waren die ersten Ansätze, weitere, wie Kamera, Ballonhülle, Fallschirm und Ballongas, ergaben sich während des Projekts. Wir begannen erst einmal mit der Programmierung des Mikrocontrollers.

Der Strahlungssensor

Für die Strahlungsmessung suchten wir nach einem Messgerät. Da wir im Februar 2013, vor Projektbeginn, das *DESY - Deutsches Elektronen-Synchrotron* in Zeuthen im Rahmen unseres Schulunterrichts besuchten, fragten wir dort auch nach einem geeigneten Messgerät nach. Das *DESY*, eines der weltweit führenden Beschleunigerzentren - forscht unter anderem in der Teilchen- und Astroteilchenphysik. Uns wurde jedoch nur eine alte Technik, Fotoemulsion, empfohlen. Ein Messgerät war auch nicht zu entleihen. Das *Max-Planck-Institut für Gravitationsphysik* empfahl uns Gammastrahlungsdetektoren, die auf Photodioden basieren. Eine passende Internetseite zeigte uns den leicht umzusetzenden Eigenbau. So war auch das Messgerät gefunden.

Die Kamera

Wir entschieden uns für eine Videoaufzeichnung, damit wir das entstandene Bildmaterial auch in einem Film zeigen können. Denkbar war auch, während des Videos Fotos festzuhalten, sogenanntes "Multi Recording", damit die Fotos eine höhere Auflösung haben. Jedoch ist diese Funktion nur bei wenigen Kameras vorhanden und hat dementsprechend seinen Preis. Wir kauften die *GoPro Hero 3 Silver Edition*, eine bekannte Action-Kamera, beliebt bei Sportlern, vielseitig einsetzbar, doch sie verfügt nur über Videoaufzeichnung. Der österreichische Extremsportler Felix Baumgartner trug mehrere Kameras von *GoPro* bei seinem Rekordsprung aus dem All bei sich. Zum Vergleich: Ein Wetterballon steigt auf 30.000 m, Baumgartner sprang aus 39.000 m Höhe. Die Kamera kommt mit Zusatzakku auf eine Laufzeit von vier Stunden. Sie selbst hat 280 Euro gekostet, mit Zusatzakku und MicroSD-Card 380 Euro.

Das Ballongas

Damit der Wetterballon auf 30.000 m steigt, muss Ballongas in reinem Zustand (99,99 %) verwendet werden. Das Gas muss dazu eine geringere Dichte als Luft haben. Infrage kommen Helium und Wasserstoff. Bedenklich wird es beim Helium, da natürliches Helium nicht ewig auf unserem Planeten existiert und bald verbraucht ist, da es überwiegend aus Erdgas gewonnen wird.

Unsere Anfragen bei großen Gashändlern ergaben, dass ein weltweiter Heliummangel herrscht und Helium deshalb bevorzugt an die Industrie vertrieben wird. Außerdem ist Helium

entsprechend teuer. Infrage kam dann Wasserstoff, da heutzutage Wetterballone auch mit Wasserstoff befüllt werden. Jedoch stellt Wasserstoff ein großes Risiko dar, da der Kontakt mit Sauerstoff eine Knallgasreaktion zur Folge haben könnte. Wir haben letztendlich einen Heliumvertreiber gefunden.

Der Flugantrag

Für den Start des Ballons muss spätestens 14 Tage vor Start ein Antrag bei der *DFS* (*Deutsche Flugsicherung GmbH*) gestellt werden. Dieser Antrag ist kostenlos und formlos. Wichtige Daten für den Flugantrag sind das Datum für den Aufstieg und der genaue Startort (inkl. Koordinaten) sowie zusätzlich Gespannlänge, -farbe, -gewicht, Steig- und Sinkgeschwindigkeit und Aufstiegshöhe des Ballons.

Gemäß § 1 Absatz 2 des Luftverkehrsgesetzes (LuftVG) zählen zu Luftfahrzeugen auch Ballone. Ein Wetterballon ist ein Freiballon.

Nach §16a der Luftverkehrsordnung (LuftVO) ist für die Nutzung des Luftraums eine Flugverkehrskontrollfreigabe einzuholen, wenn es sich um einen Aufstieg eines unbemannten Freiballons mit einer Gesamtmasse von mehr als 0,5 Kilogramm handelt.

Außerdem sind wir nach der Luftverkehrszulassungsordnung (LuftVZO) zum Abschluss einer Haftpflichtversicherung verpflichtet. Der § 33 des LuftVG besagt, dass wenn das Luftfahrzeug durch einen Unfall Personen- bzw. Sachschaden verursacht ist der Halter des Luftfahrzeugs dazu verpflichtet den Schaden zu ersetzen. Zusätzlich muss eine Einverständniserklärung des Grundstückseigentümers, von wo aus der Ballonstart erfolgt, vorliegen.

Der Startort

Es war geplant, den Ballon im Havelland zu starten. Da im Havelland kein Ereignis in dieser Form zuvor stattfand, stellte unser Projekt eine Besonderheit dar. Wetterballone werden täglich vom Deutschen Wetterdienst auf dem Gelände des Museums für Meteorologie und Aerologie in Lindenberg bei Storkow gestartet. Ein Start nahe dieses Ortes kam für uns nicht in Frage, da er sich nicht in unserer näheren Umgebung befindet und somit eine wesentlich längere Anfahrt und die Folge wäre.

Ausschlaggebend für den Startort war die Lage bzw. Entfernung zu den Berliner Flughäfen. Bei der Startortwahl war uns die DFS Deutsche Flugsicherung GmbH behilflich.

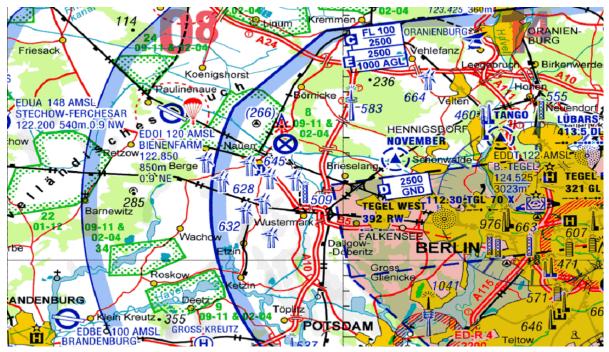


Abb. 1: Karte des Osthavellands nach der International Civil Aviation Organization (Internationale Zivilluftfahrt-Organisation)

Der Ballon treibt je nach Wetterlage weiter vom Startort ab. Meist herrscht in Mitteleuropa Westwind, wobei die Wetterlage im oberen Luftraum anders ist. Das bedeutet, der Ballon verändert seinen Kurs. Von der Flugsicherung wurde uns eine *ICAO*–Karte bereitgestellt, die das Osthavelland zeigt. *ICAO*-Karten werden in der allgemeinen Luftfahrt verwendet.

Danach befindet sich Nauen im Luftraum C. Ein Start von Nauen ist nicht optimal, da Nauen sich noch in der Flugschneise des Flughafen Berlin-Tegel befindet und ein Start abhängig vom Flugverkehrsaufkommen wäre. Darüber hinaus ist es wahrscheinlich, dass die Sonde in Berlin landen könnte und ein Aufspüren mühsam wäre. Von der Flugsicherung wurde uns deshalb ein Startort westlich von Nauen empfohlen.

Letztendlich kamen die Flugplätze Stechow-Ferchesar und Stölln/Rhinow (nicht mehr auf Karte) infrage. Von beiden erhielten wir die Zustimmung für einen Start. Wir haben uns rein aus historischen Gründen für den Flugplatz Stölln/Rhinow entschieden, dem ältesten Flugplatz der Welt. Dieser befindet sich am Gollenberg, westlich von Friesack, an dem Otto Lilienthal seine Flugversuche von 1894 bis zu seinem tödlichen Absturz am 9.08.1896 durchführte ¹. Der Flugplatz Stölln/Rhinow ist ein Sonderlandeplatz, auf dem der Flugsportverein "FSV "Otto Lilienthal" Stölln/Rhinow e.V." aktiv der Segelfliegerei nachgeht.

.

¹ Vgl. FSV Stölln

2.2. Finanzierung

Bereits während der ersten Vorbereitungstreffen zu unserem Projekt stellten wir fest, dass wir für das Projekt einen – im Verhältnis zu unseren privaten Möglichkeiten - hohen Finanzbedarf haben werden. Um genauer über den Finanzrahmen und mögliche Finanzierungen sprechen zu können, entschieden wir uns, eine detaillierte Kalkulation zu erstellen. Bereits in dieser Projektphase involvierten wir sehr stark die Kooperationspartner, um deren Erfahrungen und Know-how im Bereich Projektmanagement nutzen zu können.

Am 7. Juni 2013 trafen wir uns mit Frau Bienwald und Herrn Glagow, um die Kalkulation zu erstellen und über mögliche Finanzierung zu sprechen. Nachdem wir einen ersten Überblick über die kalkulierten Kosten erarbeitet hatten, bot uns Herr Glagow an, verschiedene Positionen über den *Deutschen Amateur-Radio-Club e.V. / Ortsverband Nauen (DARC)* zu finanzieren. Darüber hinaus konnten wir einige Bauteile den Hobby-Beständen der Familie Lenz entnehmen, so dass sich die Finanzierungslücke auf die Posten Wetterballon, Gas, Kamera, Stromversorgung und Fahrkosten beschränkte. (siehe Tabelle 1)

Was	kalkulierte Kosten	finanziert durch
Wetterballon	100,00€	
Fallschirm	50,00€	DARC
Gas	260,00€	
Versicherung	100,00€	DARC
Kamera incl. Speicherkarte	300,00€	
Fahrkosten	100,00€	
Sonde (Styropor)	10,00€	DARC
Drucksensor	10,00€	Eigenanteil
Temperatursensor		
ohne zusätzliche Funktionen	1,00€	Eigenanteil
Luftfeuchtigkeitssensor	30,00€	Eigenanteil
Photodiode	5,00€	Eigenanteil
Stromversorgung	30,00€	
Kleinteile wie Widerstände, Dioden, Transistoren, Kondensatoren etc.	20,00€	Eigenanteil
Gesamtkosten	966,00€	

Tabelle 1: Kostenkalkulation für das Projekt

Als zusätzliche Projektkosten planten wir die Finanzierung der Öffentlichkeitsarbeit ein. Da uns zu diesem Zeitpunkt allerdings der Umfang des Projektes noch nicht klar war (insbesondere zu welchem Zeitpunkt die Öffentlichkeit einbezogen werden soll), konnten wir noch keine kalkulatorische Größe festlegen. Wir vereinbarten, dass wir diesbezüglich uns sehr stark mit den *DARC e.V. / Ortsverband Nauen*, *MIKADO e.V.* und dem *Leonardo da Vinci Campus* verknüpfen wollen, um deren Infrastruktur, z.B. Informationen auf deren Homepages etc., nutzen zu können.

Um die verbleibende Finanzierungslücke für unser Projekt von ca. 790 Euro zu schließen, bot uns Anke Bienwald, Jugendklub- und Projektleiterin im Jugendklub des *MIKADO e.V.*, an, uns bei der Suche nach einer Projektfinanzierungen behilflich zu sein. Georg Drechsler erklärte sich bereit, die Suche einer möglichen Finanzierung und die Beantragung zu übernehmen.

Das Programm Think Big

Anke Bienwald berichtete uns von dem Jugendprogramm *Think Big*, mit dessen Unterstützung Jugendliche aus dem Jugendclub Nauen bereits einige Jugendprojekte erfolgreich umsetzten konnten.

Das Jugendprogramm *Think Big* wurde von der Deutschen Kinder- und Jugendstiftung, der *Fundación Telefónica* und *O2* ins Leben gerufen. Ziel ist es, Jugendliche bei Projekten zu unterstützen und dabei deren Eigeninitiative und Engagement zu fördern. Außerdem wird den Jugendlichen durch die geförderten Projekte die Möglichkeit geboten, Jobperspektiven zu entwickeln.²

Unterstützt werden Projekte, die von Jugendlichen im Alter von 14 bis 25 durchgeführt werden und Projekte, die die Themen Umwelt, Kultur, Soziales und Gesellschaft, Sport oder Hochwasser beinhalten. Der Inhalt der Projekte ist dabei egal, es gibt Projektideen, wie einen Jugendclub verschönern und erneuern oder eine lokale Fernsehsendung von Jugendlichen für Jugendliche. Diese Förderung beinhaltet ein Budget von bis zu 400 Euro und zahlreiche Coachings für die Jugendlichen.

Nach Absprache mit der gesamten Projektgruppe entschieden wir uns, einen Antrag an das Jugendprogramm *Think Big* für unser Projekt zu stellen.

Die Beantragung erfolgte über ein Online-Formular und ist sehr einfach und übersichtlich gestaltet. Nach ca. 1 Woche erhielten wir telefonisch eine Rückmeldung, dass die Programmkoordinatoren von *Think Big* Interesse an unserem Projekt haben und gerne weitere Informationen haben möchten.

Die gewünschten Informationen haben wir dann innerhalb weniger Wochen *Think Big* zukommen lassen, sie beinhalteten den Projektzeitraum, wie wir uns auf der Online-Plattform von *Think Big* präsentieren wollten, die Anzahl der Projektteilnehmer und der Unterstützer des Projekts.

Letztendlich wurde unser Projekt Anfang September genehmigt und am 9. September 2013 begann das Projekt, das von *Think Big* gefördert wurde, sodass wir das Gas, die Ballonhülle

_

² Kuntze, Think Big

³ Kuntze, Projekte

und den Fallschirm kaufen konnten. Die Kosten, die wir durch *Think Big* abdecken umfassen das Gas, die Ballonhülle und die Akkus, die den Mikrocontroller mit Energie versorgen.

Der Leonardo-da-Vinci-Campus

Da immer noch nicht genug finanzielle Mittel vorhanden waren, bot Herr Gründel, unser Schulleiter, uns an, dass die Schule einen Teil unserer Kosten übernimmt. Der betreffende Teil war die Kamera. Diese kann nun für spektakuläre Schulprojekte genutzt werden.

2.3 Internetseite

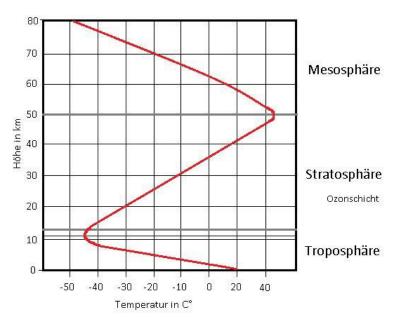
Täglich steigen Wetterballons bzw. Höhenballons vom *Deutschen Wetterdienst* ⁴ in Deutschland auf. Dabei werden Temperatur, Luftfeuchtigkeit, Windrichtung und Windgeschwindigkeit gemessen. Privatpersonen haben auch schon einen Wetterballon gestartet, wobei die meisten ihren Flug gefilmt haben und vereinzelt meteorologische Daten erfasst wurden. ⁵ Unser Projekt ist in dem Messumfang außergewöhnlich, weil wir mehrere Größen messen und umfangreich auswerten. Deshalb ist eine Internetseite in Bearbeitung. Interessenten können sich von unserer wissenschaftlichen Arbeit inspirieren lassen, die jedem Besucher kostenlos bereitgestellt wird. Diese Plattform dient darüber hinaus als Informationsquelle über die physikalischen Größen Luftdruck, Luftfeuchtigkeit, Strahlung, Temperatur und den Aufbau der Atmosphäre. Somit können sich auch junge Leser, insbesondere Schüler informieren. Die Internetplattform wird zusätzlich mit Fotos, Videos und Auswertungen der Projektarbeit gestaltet. Praktisch kann der Nutzer unser Projekt nachverfolgen.

Unser Partner *Think Big* hat zudem einen Blog für uns bereitgestellt, in dem wir über aktuelle Stände der Projektarbeit berichteten. Besucher können Kommentare abgegeben und uns weiterempfehlen.

⁴ Vgl. Deutscher Wetterdienst, 2007

⁵ Vgl. Pirnay, Jens: "Projekt Stratosphäre"

3. Bedeutung der Messgrößen


3.1 Temperatur

Unter der zu messenden Temperatur in der Erdatmosphäre ist die Lufttemperatur zu verstehen. Die Temperatur ändert sich in der Atmosphäre mit und in den verschiedenen Luftschichten. Je schneller sich die Luftmoleküle bewegen, desto höher ist der Luftdruck und damit die Temperatur. In den höhergelegenen Schichten, etwa ab der Mesosphäre, nimmt der Luftdruck ab, die Luft ist dünner und damit die Temperatur relativ niedrig. Die Lufttemperatur hängt zudem von der Strahlungsintensität und der Wettereinwirkung ab.

Wir messen die Temperatur auf unserem Ballonflug, weil sie Bedingung für die Wetterphänomene auf der Erde ist. Aus den gemessenen Temperaturwerten möchten wir u.a. die Temperaturänderung berechnen und die Ursachen dafür erschließen. Wir können so die Struktur der Atmosphäre beschreiben. Die Erfüllung unseres Projektziels, das Wetter besser zu verstehen, ist uns vorwiegend durch die Temperaturmessung gegeben. Die Auswertung

geschieht in der Einheit Grad Celsius (°C).

Der Deutsche Wetterdienst startet täglich Radiosonden und misst ebenfalls die Lufttemperatur. ⁶ Aus solchen wissenschaftlichen Arbeiten lassen sich Temperaturverläufe in der Atmosphäre ablesen. Das nebenstehende Diagramm zeigt die zu erwartende Temperaturschwankung. Es half uns im Übrigen die Messgeräte richtig zu dimensionieren.

Die Messtechnik

Diagramm 1: Verlauf der Temperatur in der Atmosphäre

Der Grafik ist zu entnehmen, dass die

Temperatur stark sinkt. Deshalb benötigten wir einen Temperatursensor, der den niedrigen Temperaturen standhält. Wir nutzten den Temperatursensor KTY 81-110 von Philips, da er zwischen -55 und +150 $^{\circ}$ C mit einer geringen Toleranz von 0,5 $^{\circ}$

misst. Er ist ein Halbleiter bestehend aus Silizium. Bei -55 °C weicht die Temperatur geringfügig um drei Prozent ab. Somit kann die Temperatur ideal in der Troposphäre gemessen werden.

Der KTY 81-110 Sensor ist wie unsere anderen Sensoren ein Halbleitersensor.

Abb. 3: Schema des Temperatursensors

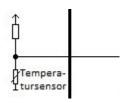


Abb. 4: Ausschnitt Schematischer Aufbau (siehe Anhang)

Der Sensor ist ein Kaltleiter (PTC- Positive Temperature Coefficient). Das heißt, er leitet bei niedrigen Temperaturen besser als bei hohen, weil sich sein elektrischer Widerstand bei sinkender Temperatur verkleinert, bei steigender Temperatur vergrößert er sich. Die Messung erfolgt anhand des Widerstandwertes. Der Sensor wird dazu mit einem Widerstand in Reihe geschaltet, sodass wir einen Spannungsteiler haben und der Spannungsabfall gemessen wird (Abb. 4). Zur Realisierung nutzen wir einen A/D-Wandler vom Mikrocontroller.

3.2. Luftdruck

Der Luftdruck gibt an, wie viel Kraft die Luftsäule auf eine bestimmte Fläche ausübt. Dabei wird die übliche Einheit 1 *Pa* (Pascal) folgendermaßen berechnet:

$$1 Pa = \frac{1N}{1m^2}$$

Die genannte Luftsäule verkürzt sich mit zunehmender Höhe, sodass sich die ausgeübte Kraft verringert. Dadurch verringert sich auch der Luftdruck. Aufgrund dessen, dass die Gravitationskraft der Erde mit zunehmender Höhe und somit auch die Dichte der Luft abnimmt, nimmt auch der Luftdruck exponentiell, sich der Null annähernd, ab.

Wir planten den Luftdruck während des Fluges zu messen, weil wir die Absicht hatten, dass unser Wetterballon ähnlich bestückt ist, wie ein Wetterballon von dem Deutschen Wetterdienst. Außerdem wollten wir anhand des Luftdrucks die reale Höhe ausrechnen, falls mal das GPS-System ausfällt. Dies könnten wir dann mit der barometrischen Höhenformel:

$$p = p_0 \cdot e^{\left(-\frac{\rho_0 \cdot g}{p_0} \cdot h\right)}$$

Um den Minimalwert des Luftdrucks Bei gerundeten 1000 *hPa* auf Meeresspiegelhöhe und einem voraussichtlichen Höchstpunkt von 18000 m über dem Meeresspiegel zu berechnen muss man folgenden Weg gehen, wobei diese Rechnung nur im Optimalfall mit trockner Luft und exakt 1000 hPa auf Meeresspiegelniveau:

$$p = 10^{5}Pa \cdot e^{\left(-\frac{1,29\frac{kg}{m^{3}}\cdot 9.81\frac{m}{s^{2}}}{10^{5}Pa}\cdot 18000m\right)}$$

$$p = 10^{5}Pa \cdot e^{-2,28}$$

$$p = 10^{5}Pa \cdot 0,10228$$

$$p = 10228 Pa$$

$$p = 102,28 hPa$$

Vorausgesetzt, die Luft ist trocken, was nie sein kann wo Leben ist, dann messen wir bei einer Höhe von 18000 m ungefähr ein Zehntel von dem, was wir auf dem Boden messen.

Die Messtechnik

Der Sensor, den wir zur Messung des Luftdrucks genutzt haben, ist der Luftdrucksensor MPX5100D, er hat einen spezifizierten Messbereich von 150 bis 1150 hPa und hat einen Fehlerbereich von 25 hPa, der bei extremen Temperaturen von -40 °C verdreifacht wird.⁷

In diesem Luftdrucksensor befindet sich eine kleine Kammer mit niedrigem Innendruck, umgeben von einer Membran. Je nachdem, wie stark die Membran in diese Kammer gedrückt wird, kann die Elektronik des Sensors den Druck berechnen.

3.3 Luftfeuchte

Die Luftfeuchte ergibt sich aus der in der Luft vorhandenen durch Wasserdampf verursachten Feuchtigkeit. Die Luft ist ein Gemisch verschiedener Gase, worunter der Wasserdampf gehört. Das Prinzip ist schnell erklärt:

Warme Luft kann mehr Wasser aufnehmen als kalte Luft (sie ist noch nicht gesättigt). Das bedeutet, sie enthält mehr Wasser und die Feuchtigkeit verdampft schneller - die Luft fühlt sich trocken an. Die Luftfeuchte hängt also mit der Temperatur zusammen. Ein Blick auf das nebenstehende Diagramm zeigt: Bei null Grad Celsius kann Wassergehalt in der Luft maximal vier Gramm pro Kubikmeter betragen, bei 100 Grad Celsius schon 600 Gramm pro Kubikmeter. Diese Form der Angabe entspricht der "absoluten Feuchte".

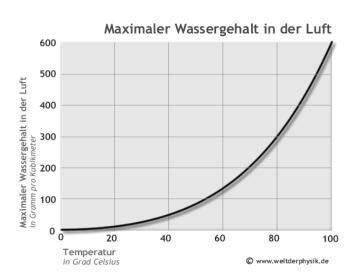


Diagramm 2: Maximaler Wassergehalt in der Luft

Relative Luftfeuchte

Einen Unterschied zur absoluten Feuchtigkeit bildet die relative Feuchtigkeit. In der Meteorologie wird diese am häufigsten verwendet. Sie wird prozentual angegeben, indem die absolute Feuchtigkeit mit der Sättigungsfeuchte ins Verhältnis gesetzt wird. Bei Nebel beträgt die relative Feuchte 100 Prozent. Dabei ist die Temperatur nicht sehr hoch und die Luft hat einen erhöhten Wasserdampfgehalt. Sie kann den Wasserdampf nicht aufnehmen und es bilden sich Wassertröpfchen⁸. Die relative Luftfeuchte nimmt mit steigender Temperatur ab. Bei absoluter Trockenheit beträgt sie null Prozent.

⁸ Vgl. Titz 2006

⁷ Vgl. Motorola

Eine besondere Stellung nimmt die relative Luftfeuchte bei der Nebelbildung ein. Der Nebel bildet sich nicht aufgrund niedriger Temperaturen, wobei anzumerken ist, dass es mehrere Nebelarten gibt.

"Wird mit Wasserdampf gesättigte Luft unter einen Temperaturwert, dem Taupunkt, abgekühlt, dann scheidet sie flüssiges Wasser durch Kondensation aus." (Deutscher Wetterdienst 2013). 9 Diese sogenannte Taupunkttemperatur ist eine von der aktuellen Temperatur unabhängige Größe.

Nutzung

Übertragen auf den Wetterballonflug muss verstanden werden, wie sich die Luftfeuchte in den Luftschichten verhält. Zunächst wird der Wasserkreislauf betrachtet. Dieser kommt durch laufende Verdunstung und Kondensation zustande. Verdunstung bezeichnet den Übergang des Wassers vom flüssigen in den gasförmigen Aggregatzustand. Dabei wird dem Oberfläche Wasser an der Wärme entzogen (Verdunstungskälte) 10. Der Atmosphäre wird dadurch ständig Wasserdampf zugeführt. Die meiste Verdunstung passiert über den Weltmeeren. Sobald der Sättigungsdampfdruck der Luft

Abb. 6: Kreislauf des Wassers

erreicht ist, entstehen Tröpfchen, die Wolken, Nebel oder Tau bilden. Dabei wird Wärme frei, die sogenannte "latente Wärmeenergie"¹¹, die beim Verdunsten dem Wasser entzogen wurde. Der Wasserdampf kondensiert, wird flüssig. Die Kondensation des Wasserkreislaufs passiert in der Troposphäre.

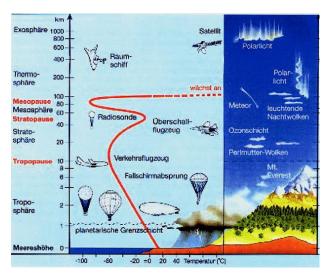


Abb. 7: Temperaturverlauf in den Luftschichten

Demzufolge müsste sich aus den Messungen der Luftfeuchte ein Anstieg der relativen Luftfeuchte bis zur Troposphäre und ab dann ein Rückgang bis zur Stratosphäre (30.000 m liegen in dieser Schicht) ergeben, da der Wasserstoff in den Luftschichten schon weitestgehend aufgenommen wurde (99 % des Wasserdampfes¹²) und somit ein Sättigungsdampfdruck nie erreicht werden kann. Außerdem bilden sich in den höheren Luftschichten keine Wolken Verglichen mit dem Temperaturverlauf ist das nachvollziehbar. Ab der Tropopause steigt die Temperatur wieder, die Luft

erwärmt sich. In dieser Luftschicht befindet sich die Ozonschicht. Diese absorbiert die UV-Strahlung der Sonne und wandelt sie in Wärmeenergie um. Deshalb steigt die Temperatur.

⁹ Vgl. Deutscher Wetterdienst 2013

¹⁰ Ebd.

¹¹ Ebd.

¹² Vgl. Schedler 2001

Wir maßen die Luftfeuchte, da sie zum Wettergeschehen beiträgt und sich damit Überlegungen anstellen lassen.

Die Messtechnik

Die Luftfeuchte wird mit einem kapazitiven (Polymer) Feuchtesensor gemessen. Solch ein Bauteil ist recht klein und platzsparend. Wie aus der Bezeichnung zu entnehmen ist, arbeiten kapazitive Feuchtesensoren wie Kondensatoren, genauer gesagt wie Plattenkondensatoren. Die zwei Platten stehen sich als Elektroden gegenüber. Eine Platte trägt auf einem keramischen Material den Polymerfilm. Polymere sind Moleküle aus langen, sich wiederholenden Ketten.¹³

Die zweite Platte wird als wasserdampfdurchlässige Elektrode genutzt. Zwischen diesen beiden Kondensatorplatten wird ein Dielektrikum geschoben, dessen Dielektrizitätszahl sich in Abhängigkeit von der aufgenommenen Feuchtigkeit ändert¹⁴. Die Änderung der Kapazität wird als Messgröße verwendet. Wenn die Dielektrizitätszahl steigt, erhöht sich die Kapazität.

Mit einer vom Hersteller angegebenen Formel lässt sich aus den Kapazitätsänderungen die Luftfeuchte berechnen. Andere kapazitive Feuchtesensoren haben außerdem einen Temperatursensor integriert, womit die absolute Luftfeuchte berechnet werden kann, doch können diese nur bis zu einem Temperaturwert von -40 °C arbeiten.

Wir verwendeten den kapazitiven Feuchtesensor KFS 140-FA von HYGROSENS Instruments der die relative Luftfeuchtigkeit misst. Er wurde speziell für den Einsatz in Radiosonden und Wetterballons entwickelt und hat dadurch bei extrem niedrigen Temperaturen (-60 – 150 °C) einen kleinen Fehlerbereich. ¹⁵

14

¹³ Vgl. Subramanyam et al 2010: 97

¹⁴ Vgl. Michell Instruments 2013

¹⁵ Vgl. Reichelt Elektronik 2013

3.4 Strahlung

Wir maßen Gammastrahlung, weil sie in der Atmosphäre gut zu messen ist und wir die Strahlungsintensität in der Atmosphäre erfahren wollten. Gammastrahlung auf der Erde stammt überwiegend aus der Sonne, sonst aus anderen Bereichen des Weltalls. Auf der Erde ist die Gammastrahlung nicht so stark zu detektieren wie Alpha- und Betastrahlung, da sie größtenteils von der Ozonschicht, aber auch anderen Luftschichten absorbiert und abgebremst wird. Das lebenswichtige Ozon (O₃) entsteht durch den

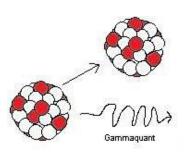


Abb. 9: Die Entstehung von Gammastrahlung

Aufprall kurzwelliger UV-Strahlung auf Sauerstoffmoleküle. ¹⁶ Dieses zerfällt jedoch sehr schnell in Sauerstoffmoleküle (O₂). Somit kommt es zu einem Gleichgewicht zwischen Aufund Abbau von Ozon. ¹⁷ Wetterballone fliegen in der Regel in eine Höhe von 25 bis 30 km. Mit etwas Glück erreicht der Ballon sogar 35 km Höhe, sodass der Ballon über der Ozonschicht ¹⁸ schwebt und mehr Gammateilchen auf die Photodiode treffen.

Gammastrahlung entsteht sowohl bei Zerfallsprozessen zwischen Materie und Antimaterie, als auch bei radioaktiven Prozessen zwischen entsprechenden Elementen. Auf der Erde entsteht Gammastrahlung durch Alpha- oder Beta-Zerfällen. Nach einem Zerfall hat der Atomkern sehr viel Energie, d.h. er ist überladen und außerhalb seines Grundzustandes. Er hat überschüssige Energie. Folglich sendet er Gammastrahlen aus, welche die Energiedifferenz der Zerfallselemente annimmt. Gammastrahlung hat ein weitaus größeres Durchdringungsvermögen als Beta- und Alphastrahlung aufgrund der kleinen Wellenlänge von < 0,5 nm. Ein weiterer Unterschied besteht darin, dass Alphastrahlung in kurzer Zeit die Materie ionisiert, Betastrahlung hat eine größere Reichweite, welche von der Protonenanzahl in der Materie abhängt. In der Erdatmosphäre tauchen u.a. deshalb Alpha- und Betateilchen nicht auf, weswegen wir diese bei der Strahlungsmessung ausschließen konnten.

Es ist bekannt, dass die Ozonschicht ein sogenanntes Ozonloch hat. Damit wird ein Bereich in der Atmosphäre über den Polen gemeint, der durch Treibhausgase und Umwelteinflüsse entstanden ist und dessen Schichtdicke klein ist. Durch diese Schicht gelangt der größte Anteil der Strahlungsarten. Das zeigt, dass die Ozonschicht für das Klimageschehen ausschlaggebend ist. Davon abgesehen, versprachen wir uns auffällige Strahlungsmesswerte in der Ozonschicht.²¹

Abb. 10: Strahlungsemission der Sonne

¹⁶ Vgl. Franck 2012

¹⁷ Vgl. Meyers Grosses Taschenlexikon 2001

¹⁸ Vgl. Franck 2012

¹⁹ Vgl. Volkmer 2002

²⁰ Ebd.

Ebd.

²¹ Vgl. Franck, 2012

3.5 **GPS**

GPS, das ist die Abkürzung für Global Positioning System, ist ein für die Positionsbestimmung entwickeltes System des amerikanischen Verteidungsministeriums. Ordnungsgemäß wird von NAVSTAR (Navigation System for Timing and Ranging) gesprochen. Neben diesem amerikanischen System gibt es noch das russische GLONASS (Global Navigation Satellite System), das ähnlich funktioniert aber sich nicht global durchgesetzt hat. Das GPS steht jedem frei zur Verfügung. Grundlage bilden die auf der Erdumlaufbahn kreisenden, geosynchronen Navigationssatelliten. Über 30 Satelliten sind für das System ausgelegt, wobei 24 davon aktiv sein müssen. Unterteilt ist das System in Kontrollsegment Weltraumsegment (Space Segment), (Control Segment) Empfängersegment (User Segment). Dabei bilden die Satelliten das Weltraumsegment, Kontrollstationen das Kontrollsegment und der GPS-Empfänger das Empfängersegment. Die Satelliten senden regelmäßig Signale in Form von Radiowellen an den GPS-Empfänger, der dann aus diesen Signalen seine genaue Position, Geschwindigkeit und Zeit bestimmen kann.²²

Positionsbestimmung

Für die Positionsbestimmung sind Signale von mindestens drei Satelliten notwendig, da der GPS-Empfänger seine Position sonst nur auf der Erdoberfläche bestimmen kann. Es handle sich dann eine zweidimensionale Positionsbestimmung (2D position fix).²³

Der GPS-Empfänger vergleicht die Zeit der Signalaussendung mit dem Signalempfang und bestimmt aus der Zeitdifferenz die Entfernung zum Satelliten. Ein Signal wird normalerweise

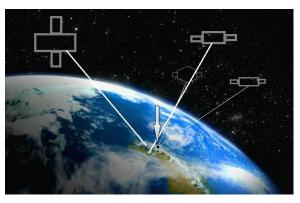


Abb. 11: Positionsbestimmung anhand von Satelliten

innerhalb von 0,067 Sekunden²⁴ empfangen. Zunächst wird eine einzelne Signalübertragung betrachtet: Damit lässt sich lediglich die Entfernung beider Segmente bestimmen. Man stelle sich einen Blitzeinschlag vor und zähle die Sekunden zum Donner.²⁵ Nun ist die Entfernung aus Zeitdifferenz und Schallgeschwindigkeit (bei 20 °C 344 m/s) zu berechnen. Übertragen auf das GPS nehme man die 0,067 m/s als Geschwindigkeit. Die Geschwindigkeit des GPS-Empfängers und die Bewegungsrichtung können dann nach mehreren Positionsdaten auch bestimmt werden. Der 3D-Position-Fix hat eine genauere Ortsbestimmung zur Folge. Ein einzelnes Signal legt beispielsweise genau 300 km zum Empfänger zurück, dann ist die Positionsbestimmung höchstens auf diese Distanz korrekt. Vergleicht man drei Satelliten miteinander, so lässt sich der Durchschnitt bzw. Schnittpunkt ihrer Daten berechnen, wobei nun auch die Höhe enthalten ist (3D position fix). Diese sogenannte Pseudoentfernung (pseudo range) ist auf einen Radius von 15 Metern genau.

²² Vgl. Köhne/Wößner 2008 (1)

²³ Vgl. Köhne/Wößner 2008 (2)

²⁴ Vgl. Wassermann 2011

²⁵ Ebd.

Die Kontrollstationen haben lediglich die Aufgabe der Kontrolle der Satelliten. Befindet sich ein Satellit genau über einer Kontrollstation, werden empfangene Signale auf korrekte Angabe der Position und Uhrzeit geprüft. ²⁶ Stimmen diese beispielsweise nicht mit der Position der Kontrollstation überein, werden neue Navigationsmitteilungen an den Satelliten gesendet. Eine falsche Angabe der Uhrzeit passiert selten, da Satelliten mit Atomuhren ausgestattet sind.

Nutzung

Wir verwendeten das GPS zur Messung der Höhe und des Längen- und Breitengrads. Das GPS war für unseren Wetterballonflug wichtig, damit wir unsere eingebauten Geräte wiederfinden und die Daten auswerten konnten. Außerdem lässt sich später aus den GPS-Daten die Flugbahn dreidimensional in Google Earth veranschaulichen.

Der verwendete GPS-Empfänger gibt die Daten der Auswertung in Form von Datenpaketen aus. Für uns interessant ist der GPGGA-Datensatz. Dieser enthält die Zeit, Position und Höhe. Mehr dazu in Kapitel 4.4.

Abb. 12: Der GPS-Empfänger Wir haben die empfangenen GPS-Navigationsdaten auch für die Funkfernübertragung genutzt, damit wir den Ballon verfolgen konnten. Dafür wird das APRS (Automatic Packet Reporting System) genutzt. Herr Glagow nutzte sein Auto als

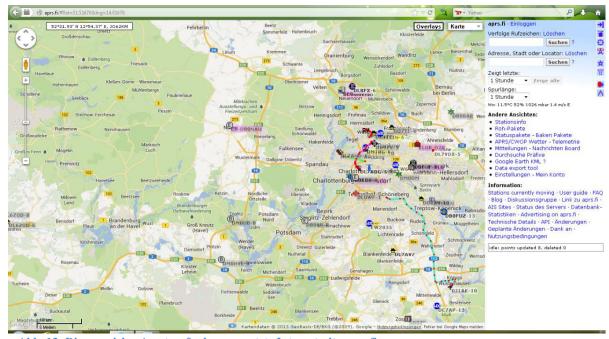


Abb. 13: Die von vielen Amateurfunkern genutzte Internetseite aprs.fi

Amateurfunkstation. Der GPS-Empfänger wertet die von den Satelliten empfangenen Daten aus und gibt die berechneten Positionsdaten in Form der oben beschriebenen GPGGA-Datensätze aus. Ein Funkmodem sendet sie über Funk im 1-Minuten-Takt weiter. Die Amateurfunkstation empfängt diese und spielt sie ins APRS-Netz ein. Mit den empfangenen Funksignalen ist es möglich, auf einer digitalisierten Landkarte die Position zu verfolgen.

_

²⁶ Vgl. DomainLoc.com GmbH

Dazu benutzten wir die Internetseite aprs.fi. Die GPS-Ausrüstung wurde uns von Herrn Glagow bereitgestellt.

4. Entwicklungsphase

4.1 Bau des Strahlungssensors

Die Photodiode BPW-34 ist eine Halbleiterdiode mit pin-Übergang. Sie kann zwischen -40 und +85 Grad Celsius betrieben werden. Befindet sie sich außerhalb dieser Reichweite kommt es zu einer größeren Abweichung der Werte. Dazu kann sie Strahlung bis zu einer Wellenlänge von 850 nm auf einer Fläche von 2.65 x 2,65 mm messen. Ihre Kapazität beträgt 73 pF. Sie besteht aus Silizium, das in der Natur häufig vorkommt, z.B. im Sand. Das

Abb. 14: Die Photodiode BPW-34

Kristallgitter von reinem kristallinem Silizium enthält keine freien Elektronen. Das bedeutet, dass es in diesem Zustand kaum Strom leiten kann. Durch gezieltes Verunreinigen (Dotieren) oder hohe Feldstärken können Ladungsträger frei werden. Eine normale Diode (pn-Diode) besteht aus einer p (positive) und einer n (negative) dotierten Siliziumschicht. Zwischen diesen beiden Schichten baut sich die Sperrschicht auf.

Pin-Dioden haben zusätzlich die i-Schicht. Das "i" steht für intrinsisch= eigenleitend. Wenn sie in *Sperrrichtung* betrieben werden, werden die Ladungsträger an dieser Schicht vom Durchlaufen abgehalten, dadurch bildet sich eine größere Sperrschicht als bei pn-Dioden aus. Sie wirkt

p i n

Abb. 15: Aufbau einer Pin-Diode

in diesem Fall als Sperrschicht. Die Abkürzung "pin" steht für positive intrinsic negative.

Trifft Licht auf die Photodiode werden einfallende Photonen absorbiert, indem sie ihre Energie an Elektronen abgeben. Wird Wärme zugeführt, leitet die Diode, weil das Silizium aufgrund der entsprechend hohen Energiezufuhr zu schwingen beginnt und daraufhin die Bindung aufbricht.²⁷ Daher sind sie wegen der Wärmezufuhr eigenleitend.

Pin-Dioden sind aufgrund ihrer i-Schicht und größeren Sperrschicht rauschärmer als pn-Dioden. Wird die Diode vor Photonen abgeschirmt, etwa durch Alu-Folie, kann sie als Strahlendetektor eingesetzt werden.

Die Messtechnik

Trifft ein hochenergetisches Gammaquant auf die empfindliche Fläche, entstehen dort freie Ladungsträger und bewirken einen Stromfluss. Dieser Stromfluss bewirkt eine Spannungsänderung an dem in Reihe geschalteten Widerstand. Das Eintreffen eines Gammaquants können wir an der Spannungsänderung erkennen.

Die Anzahl dieser Spannungsänderungen ist

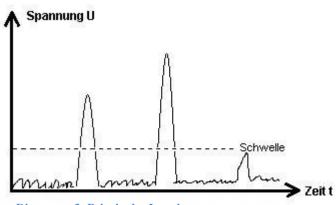
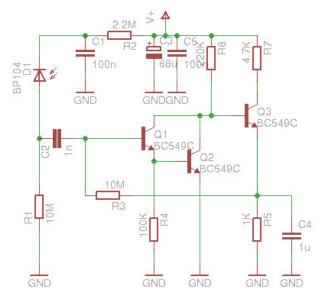


Diagramm 3: Prinzip der Impulsmessung

_


²⁷ Vgl. Danielak, 2006

dann ein Maß für die Stärke der Strahlung. Die Schwierigkeit besteht darin, diese kleinen Spannungsänderungen gegenüber dem Rauschen, das durch Wärme und Störstrahlung entsteht, zu erkennen. Die Messschaltung muss sorgfältig aufgebaut werden, um nur wenige Störungen zu verursachen und es muss die Schwelle ermittelt werden, sodass keine Störungen oberhalb der Schwelle liegen, aber die Spannungsänderungen aufgrund der Gammaquanten erkannt werden. Kommt es zu einer hohen Amplitude über dem eingestellten Bereich, also einer Spannungsänderung, lässt sich ein Gammaquant vermuten. Es kommt graphisch zu einem Ausschlag, der als Messimpuls zu verstehen ist. Durch die eingestellte Schwelle vermeiden wir, Rauschpulse zu messen.

Das geschriebene Programm auf dem Mikrocontroller stellt die Schwelle so ein, dass sie 100 mV über dem Rauschen liegt. Die Impulse der Gammateilchen werden gezählt und abgespeichert.

Umsetzung

Die Photodiode ist eine Alternative zum Geiger-Müller-Zählrohr. Vom Max-Planck-Institut

wurden wir auf die Internetseite: http://www.elektronik-labor.de/Projekte/ Alpha.html hingewiesen. Dort gibt es einen Schaltplan, den wir etwas abgewandelt haben. Einerseits waren andere Widerstände bereits vorhanden, andererseits wollten wir die Empfindlichkeit der Schaltung erhöhen, sodass wir in den Schaltplan drei Transistoren Verstärkung zur der elektrischen Signale einbauten.

Abb. 16: Schaltplan des Strahlungssensors

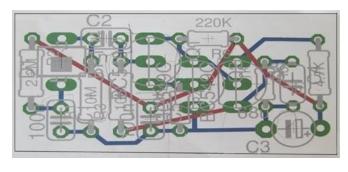


Abb. 17: Layout-Plan des Strahlungssensors

Anschließend wurde aus dem Schaltplan mit dem Programm *CadSoft Eagle PCB* unter Linux ein Layout-Plan erstellt, um das Löten der Schaltung zu vereinfachen. Die Schaltung wurde auf einer Lochrasterplatine aufgebaut.

Die Schaltzeichen

	Der Widerstand ist ein ohmscher Widerstand und begrenzt die Stromstärke. Er lässt Spannungsänderungen aufrechterhalten. Der Widerstand R1 mit 10 Megaohm ist ein großer Widerstand um die Spannungsänderung groß zu haben. [Beispiel: U= I * R \Rightarrow 30 A * 10 ⁶ Ω = 3 * 10 ⁸ V]
7	Die BPW-34 Photodiode wird in Sperrrichtung betrieben. Über die Sperrschicht fließt ein kleiner Strom, deshalb nutzen wir z.B. den 10 Megaohm-Widerstand R1.
B	Ein Transistor hat drei Anschlüsse: Basis (B), Kollektor (C) und Emitter (E). Am Anschluss B fließt der Basisstrom in den Transistor, bei Anschluss C ebenso, und der verstärkte Strom aus dem Emitter E. Die verwendeten drei Transistoren haben den Verstärkungsfaktor 600. Die Transistoren Q1 und Q2 sind hintereinander geschaltet, um doppelt zu verstärken; d.h. die Verstärkungsfaktoren multiplizieren sich. Man spricht hier von der Darlingtonstufe. Dabei wird der Basisstrom Q1 verstärkt und durch Transistor Q2 nochmals verstärkt. Dadurch können sich kleinste Ströme verstärken. [Rechenweise: Strom (B) * Verstärkungsfaktor = Basisstrom Basisstrom(B) + Kollektorstrom(C) = Emitterstrom(E) Transistor 2: Basis Q1* VerstärkungsfaktorQ2 = Gesamtstrom
1	Ein Kondensator wirkt Spannungsänderungen entgegen.
	Elektrolytkondensatoren sind gepolt und haben eine höhere Kapazität als klassische Kondensatoren und eine bessere Stabilisierung. Der Elektrolyt bildet die Kathode. Daher dürfen sie nur bei Gleichspannung eingesetzt werden.
4	Versorgungsspannung V+.
上	GND steht für Ground/ Masse. Damit ist der Minuspol gemeint.

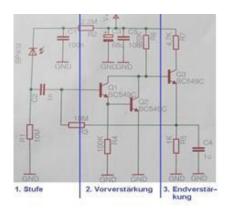


Abb. 18: Stufeneinteilung des **Schaltplans**

Die Schaltung lässt sich in drei Stufen der Verstärkung einteilen. In der ersten Stufe treffen die Gammateilchen auf die Photodiode, es kommt zu einer Spannungsänderung. Dieses Signal muss verstärkt werden. Dazu wird in der zweiten Stufe, als Vorverstärkerstufe, das Signal durch zwei Transistoren verstärkt. Als nächste Stufe folgt die Endverstärkung, die den Ausgangswiderstand verringert, um Störungen zu reduzieren.

4.2 Der Mikrocontroller

Der 8-bit Mikrocontroller ATxmega128A3U ist von der Firma Atmel. Er verbraucht wenig Strom trotz hoher Performance. Wir speicherten die Messungen im EEPROM mit 2 KByte (2048 Bytes) Größe. Damit die Daten darauf passen, ließen wir auf den Mikrocontroller viermal pro Minute bzw. Temperatur, Luftdruck, Luftfeuchte und Höhe speichern. Strahlung, Längen- und Breitengrad werden einmal pro Minute gespeichert, weil bei einem längeren Messintervall mehr Messimpulse aufgrund von Gamma-Quanten entstehen und damit einen besseren Wert darstellen, und die Speicherung von Längen- und Breitengrad reicht aus, um die Position des Ballons auszumachen. Leider reicht der Speicherplatz für diese gewünschte Aufzeichnungszyklusdauer nicht aus, um die Daten in voller Auflösung zu speichern. Deshalb komprimierten wir sie, d.h. wir speicherten die Differenzen zwischen zwei aufeinander folgenden Differenzen von Messwerten (Differenz der Differenz), sodass wir diese nur noch addieren müssen, um den wahren Wert zu erhalten. Das verlangt jeweils einen Anfangsmesswert, der ein paar Bits verbraucht. Bei guter Dimensionierung der Komprimierung geht keine oder wenig Genauigkeit verloren. Genauigkeitsverlust betrifft nur den Einzelwert, da der Fehler für den darauffolgenden Messwert korrigiert wird.

Berechnung

3,5 Stunden Flugzeit ≜ 210 *Minuten* = 210 *Datensätze*

Differenz der Differenz Zeit in min 00:20 00:40 01:00 01:20 01:40 Beispiel Temperatur (Erstwert 12 Bits) 23° 24° 22.1° Temperatur Differenz -0.9-1.1 Zum Erstwert (Startbits) DiffDiff 0 0,1 -0.2Abb. 19: Berechnung der Differenz der Differenz

Temperatur= 12 Bits; Luftdruck= 12 Bits;

Luftfeuchte= 10 Bits; Strahlung= 0 Bits;

Höhe= 6 Bits; Längen- und Breitengrad= 20 Bits

Zusammenfassung \rightarrow 12+12+10+6+20+20 = 80 Bits = **10 Bytes**

$$\frac{2048 \, Bytes - 10 \, Bytes}{2 \, Bytes} = 1019 \, Datensätze // 2 \, Bytes \, pro \, Datensatz$$

Aufbau

Der Mikrocontroller hat einen Spannungsregler aufgelötet und einen Temperatursensor integriert. Die Temperatur haben wir trotzdem extern gemessen. Der Spannungsregler auf dem Mikrocontroller-Board wandelt die einkommende Versorgungspannung von 5V in 3.3 V um, da der verwendete Mikrocontroller nur mit 3.3V betrieben werden kann

Abb. 20: Der ATxmega128A3U

Der Mikrocontroller kann so programmiert werden, dass er multitaskingfähig ist, d.h. er kann Daten einlesen, während er andere verarbeitet. Der Mikrocontroller verfügt zur Speicherung von Daten über ein SRAM (Static Random Access Memory), ein EEPROM (Electrically Erasable Programmable Read-Only Memory) und ein Flash-PROM. Ein SRAM hat den Vorteil, dass die Daten direkt gelesen und geschrieben werden können. Das EEPROM dagegen ist aufwendig zu programmieren. Wir entschieden uns trotzdem für das EEPROM, weil das SRAM seine Daten ohne Spannungsversorgung verliert und wir so dieses mit einer Batterie extra versorgen müssten. Das EEPROM besteht aus zwei Seiten mit jeweils 32 Bytes, wobei die 32 Bytes in einem Schritt programmiert werden können.

Das Programm wir so implementiert, dass die Speicherung stoppt, sobald das EEPROM voll ist. Das EEPROM arbeitet stromsparend und behält die Daten auch nach dem Abschalten der Versorgungsspannung. Sie werden nach dem von uns programmierten Algorithmus erst gelöscht, wenn wir manuell die Reset-Taste betätigen. Das EEPROM ist aus einer Matrix von Feldeffekttransistoren aufgebaut und wird über ein "Floating Gate", wo Ladung eingebracht wird, programmiert bzw. gelöscht. Jeder Feldeffekttransistor repräsentiert eine Bit-Einheit. Zum Löschen oder Programmieren der EEPROM-Zelle wird intern über Spannungspulse Ladung auf das Floating-Gate gebracht bzw. von dort entzogen. Die Ladung bleibt bis zum Löschvorgang auf dem isolierten Gate.²⁸

Der Controller hat 8 Event-Channels, wobei wir bei den Messungen von Strahlung einen und von Luftfeuchte zwei nutzen. Wir nutzen einen von zwei 12-Bit ADCs (Analog Digital Converter) mit 16 Kanälen für den Luftdruck- und Temperatursensor. Der Mikrocontroller enthält auch zwei 12-Bit DACs (Digital Analog Converter) mit jeweils 2 Kanälen, welche wir für die Umwandlung der digitalen Werte von Strahlungs- und Luftfeuchtesensor verwendeten. Die USB 2.0-Schnittstelle nutzten wir zur Stromversorgung mit 5V, die wir über einen 5V-Spannungsregler erzeugten, der wiederum von drei Batterien versorgt wurde, die zusammen 9V bereitstellen.

_

²⁸ Vgl. Atmel Corporations, 2013, S. 4

Der Mikrocontroller muss außerdem die Daten für Breitengrad/Längengrad und Höhe von dem GPS-Empfänger einlesen, wozu wir eine von sieben USART-Schnittstellen (Universal Synchronous/Asynchronous Receiver Transmitter) verwendeten. Diese Schnittstelle kann zwischen sich und einem Empfänger Daten senden und erhalten, in unserem Fall ist nur das Empfangen notwendig. Der Empfang geschieht asynchron, das heißt Daten bzw. Zeichen werden ohne extra Taktsignal übertragen. Der GPS-Empfänger sendet zyklisch Datenblöcke mit unterschiedlichen Informationen. Wir waren an den Daten des Datenblocks GPGGA interessiert, pro Zeichen werden 8 Bit übertragen (→ 4.8.4 GPS).

Software

Die Applikation des Mikrocontrollers unterscheidet vier Modi der Arbeitsweise:

MODUS_ONLINE bezeichnet den Modus, wenn die Messdaten während der Messung

über die USB-Schnittstelle ausgegeben werden.

MODUS_SPEICHERN bezeichnet den Modus, wenn Messungen bevorstehen und im

EEPROM abgespeichert werden

MODUS_AUSLESEN bezeichnet den Modus, wenn die gespeicherten Daten abgerufen

werden.

MODUS_LOESCHEN bezeichnet den Modus, wenn das EEPROM gelöscht wird.

Der gewünschte Modus wird manuell über Steckbrücken eingestellt. Dazu dienen Stiftleisten, die durch höchstens zwei metallische Brücken beeinflusst werden. Wenn Strom fließt, zeigt die LED-Lampe den über Brücken gesteckten Modus an. Folgendermaßen sieht die Steckund Blinkweise aus:

MODUS_ONLINE Es wird keine Brücke gesetzt. Die LED leuchtet dauernd.

MODUS_SPEICHERN Die linke Brücke wird gesetzt. Die LED blinkt nach dem

Bestätigen periodisch zweimal hintereinander.

MODUS_AUSLESEN Es wird die rechte Brücke gesetzt. Die LED leuchtet nicht.

MODUS_LOESCHEN Es werden beide Brücken gesetzt. Die LED blinkt periodisch

dreimal hintereinander.

Wenn der gewünschte Modus angezeigt wird, ist er mit dem Taster zu bestätigen. Ist bereits eine Messung durchgeführt und auf dem EEPROM gespeichert, können noch Daten ausgelesen werden. Erst wenn das EEPROM gelöscht ist, kann wie vorher verfahren werden. Die Datenverarbeitung funktioniert so als Zustandsmaschine.

Abb. 21: Die Steckleisten für die Modi

Verarbeitung der Messdaten

Die Daten werden so, wie sie aus dem A/D-Wandler oder aus den Zählern kommen, direkt gespeichert bzw. werden sie direkt komprimiert und dann gespeichert. Es wird also keine Umwandlung in die Einheiten, wie etwa °C oder hPa, vorab auf dem Mikrocontroller vorgenommen. Die Umwandlung geschieht erst durch das nachverarbeitende Programm

(→ 7. Auswertung). Durch diese Vorgehensweise geht keine Genauigkeit durch die Vorverarbeitung verloren. Werden Kalibrierungsfehler später festgestellt, können die Daten jederzeit neu konvertiert werden.

4.3 Programmierung

Das Programm wurde modular implementiert, sodass die einzelnen Module spezifische Aufgaben erfüllen und die Summe der Module das Programm bildet. Die Entwicklungsumgebung setzt die Module zusammen, die dann auf dem Mikrocontroller das Programm ermöglichen.

Die Programmdateien wurden unterteilt in Header-Dateien und die eigentlichen Quelldateien. Die Header-Dateien beinhalten die Spezifikationen der Variablen, der Konstanten und der verschiedenen Funktionen. Die Funktionen werden dann in den Quelldateien implementiert. Die Verwendung von Header-Dateien ermöglicht es, die entsprechende Spezifikation in mehreren Quelldateien zu nutzen und damit sicher zu stellen, dass die Quelldateien der Module dieselben Spezifikationen verwenden.

Die Quelldateien verwenden das '#include'-Schlüsselwort um Header-Dateien einzubinden. Im Anhang befindet sich eine schematische Darstellung über die Programmierweise.

4.3.1 Temperatur und Luftdruck

Um die Temperatur und den Luftdruck im Mikrocontroller zu speichern, haben wir ein Programm für beide Größen zusammengeschrieben, da deren Speicherung durch dasselbe Prinzip arbeitet.

In regelmäßigen Abständen misst der Temperatur- bzw Luftdrucksensor und sendet die Werte jeweils an einen analog-digital-Converter (ADC). Dieser ADC wandelt die vom Sensor analog ausgegebene Spannung in eine Zahl um, die der Mikrocontroller speichern kann. Diese Zahl ist eine ganze Zahl im Intervall von 0 bis 4095, was daran liegt, dass der Mikrocontroller in einem 12-Bitsystem arbeitet und ein Bit aus 1 oder 0 besteht. Das heißt, dass es pro Bit zwei Zustände gibt. Daraus ergibt sich, ähnlich wie bei der Variation mit Wiederholung, folgende Gleichung:

$$2^{12} = 4096$$

Dennoch ist die höchste digitale Zahl 4095, da die kleinste 0 ist und dadurch 4096 Zahlen vorhanden sind.

Anschließend werden die digitalen Zahlen addiert und alle 20 Sekunden gemittelt und im EEPROM gespeichert. Danach wird dasselbe Prinzip fortgesetzt.

Analoge Zahlen sind alle Zahlen die gemessen werden. Digitale Zahlen verändern sich dagegen stufenweise, sodass eine digitale Zahl aus mehreren analogen Zahlen konvertiert werden kann.

4.3.2 Luftfeuchte (mit Quelltexterklärung)

Die Kapazität wird durch Zählen der Ladedauer des Kondensators über einen Widerstand nach dem Einschalten einer Spannung bestimmt. Widerstand und Kondensator (Luftfeuchtesensor) sind in Reihe geschaltet. Der Ladevorgang ist beendet, wenn eine Vergleichsspannung (voreingestellt) erreicht wurde.

Im Detail:

Die Reihenschaltung Widerstand-Sensor (Gleichspannung) wird an PortE0 geschaltet. Dieser Port ist verbunden mit dem Zähler (Timer/Counter) TCE0, der ein periodisches Rechtecksignal generiert. Das Rechtecksignal hat eine Periodendauer von 10ms, die Einschaltdauer beträgt 0,5ms.

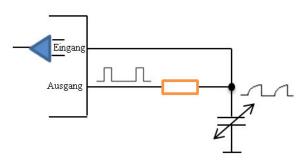


Abb. 22: Reihenschaltung von Widerstand - Sensor

Scaler. Dieser gibt den "Spannungsmaßstab" an, es ist die Vergleichsspannung. Der Komparator vergleicht die Spannungen an seinen Eingängen (Inputs) miteinander und gibt an, welche größer ist. Er kann vom Mikrocontroller dazu verwendet werden. Interrupts zu erzeugen, die für das Einleiten einer Änderung wichtig sind. Der Ausgang schaltet dazu entweder von null auf eins (steigende Flanke/ rising edge) umgekehrt (fallende Flanke/ falling edge). Wir stellen den Komparator so ein, dass er bei steigender Flanke schaltet.

Ein Rechtecksignal hat einen sprunghaften Anstieg und Abfall, im Gegensatz zu einem sinusförmigen Verlauf. Es wird erreicht, indem die Versorgungsspannung mit einer festen Frequenz zwischen LOW und HIGH umgeschaltet wird.

Die Spannung am Luftfeuchtesensor wird an den Eingang "+" des Analog-Komparators geleitet. Am Eingang "-" liegt der Voltage-

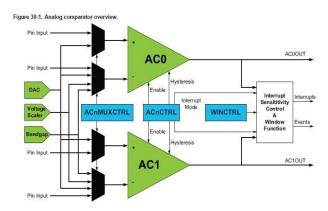


Abb. 23: Schema des Analog Komparators

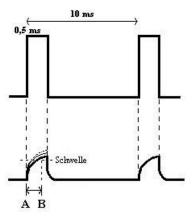


Abb. 24: Die Rechteckspannung

Ein zweiter Zähler TCE1 wird mit zwei Capture-Registern (Capture Channels; Capture = Registratur) dazu verwendet, die **Ladezeit des Sensors** zu zählen, da Capture-Register auch verwendet werden können, um externe Ereignisse zu erfassen und ihnen einen Zeitstempel zu verpassen. Capture A wird über Event-Channel1 an den Analog-Komparator und Capture B über Event-Channel2 an den Ausgang geschaltet. Capture B wird gesetzt, sobald das Rechtecksignal einschaltet

(Einschaltphase), Capture A wird gesetzt, wenn die Ladespannung (Referenzspannung) die Vergleichsspannung erreicht hat. Die Differenz der Capture-Register entspricht der Ladezeit/ Kapazität. Sie wird immer auf den letzten Wert addiert. Zuletzt wird die Ladezeit durch die Anzahl der in 20 Sekunden passierten Messungen geteilt (Mittelwertbildung).

Nach dem Einschalten des Rechtecksignals wird ein Interrupt (Unterbrechungsanforderung) ausgelöst und der Prozessor für 10ms in den Schlafmodus (Sleep Mode) versetzt. Im Sleep Mode können beispielsweise Timer und USART deaktiviert werden. Das ist wichtig, um Strom zu sparen und für eine längere Laufzeit zu sorgen. In unserem Fall wird nur der Prozessor "schlafen gelegt".

Programmtechnisch umgesetzt sieht das folgendermaßen aus:

```
void luftfeuchte_init()
     /* fuer die Nutzung der USB-Schnittstelle programmiert die Atmel-Software den internen
      32MHz Takt um, so dass ein Systemtakt von 24MHz zur Verfuegung steht */
     sysclk_enable_module(SYSCLK_PORT_E,
                                         SYSCLK TCO);
     sysclk_enable_module(SYSCLK_PORT_E, SYSCLK_TC1);
     /* Initialisierung fuer den Komparator */
     ACB AC1MUXCTRL = 0x17; // "+" Eingang auf PortB2, "-" auf den Voltage-Scaler
     ACB_CTRLB = 45; // Scaler auf 70% der Versorgungs-Spannung 0.7*64
                 = Oxcb; // Event bei steigender Flanke,
     ACB AC1CTRL
                         // High-Speed-Mode, kleine Hysterese, AC aktivieren
   /* Initialisierung fuer den Timer/Counter TCEO (Rechteck) */
     TCEO.CTRLA = 0x04; // Zaehlereingang auf Vorteiler 1/8 stellen -> 3MHz
                   = 0x13; // Zaehler auf "PWM"-Modus, Capture-Register A
     TCEO.CTRLB
     TCEO.CTRLD = 0x00; // Eingangs-Events deaktivieren
     TCEO.CTRLE = 0x00; // auf "Type0" stellen = 16-Bit-Zaehler
     TCEO.PER
                   = 29999;//5000; // Periodendauer auf 10ms (30000 / 3MHz)
     TCEO.PERBUF
                   = 29999;//5000;
     TCEO.CCA = 1500; // Einschaltphase 0,5ms (250 / 500kHz)
     TCEO.INTCTRLB = 0x03; // schalte den Compare A Interrupt auf hohe Prioritaet
   /* Initialisierung fuer den Timer/Counter TCE1 (Lade-Messung) */
     TCE1.CTRLA = 0x01; // Zaehlereingang auf Vorteiler 1/1 stellen -> 24MHz
     TCE1.CTRLB
TCE1.CTRLD
TCE1.CTRLE
                   = 0x30; // Zaehler auf "Normal"-Modus, Capture-Register A + B
                   = 0x29; // Eingangs-Capture, Eventkanal 1..
                   = 0x00; // auf "Type0" stellen = 16-Bit-Zaehler
     /* schalte Komparator 1 auf EventChannel 1 */
     EVSYS_CH1MUX = EVSYS_CHMUX_ACB_CH1_gc;
     EVSYS_CH2MUX = EVSYS_CHMUX_TCEO_OVF_gc;
     /* Mittelwertbildung initialisieren */
               = 0:
     SummeZaehler = 0;
```

Abb. 25: Auszug aus dem Quelltext

Zuerst werden die benötigten Einstellungen am Controller vorgenommen bzw. die Module werden

initialisiert. Wichtig ist, dass die USB-Schnittstelle (Universal Serial Bus Interface), über die die Messwerte am Computer ausgelesen werden, nutzbar gemacht wird. Der Hersteller Atmel hat eingestellt, dass die Schnittstelle mit 24 MHz betrieben wird statt mit dem internen Takt von 32 MHz. Um das zu erreichen, wird der kalibrierte 32 MHz Oszillator verstimmt und auf ungefähr 24 MHz gesetzt. Dadurch ist der Systemtakt, den die Messgeräte nutzen, zeitlich ungenau. In dem Mikrocontroller ist ein Oszillator auf Halbleiterbasis mit 32 MHz eingebaut,

nicht ein Quarz-Oszillator, wie in PCs eingebaut mit genauer Zeitangabe. Die zeitliche Ungenauigkeit stellte sich bei der Auswertung und dem Vergleich mit dem Video heraus und konnte leicht korrigiert werden (→ 7.3 Luftfeuchte). Bei dem Komparator wird die steigende Flanke eingestellt, die Zähler werden mit den Ports verbunden. Hier ist zu beachten, dass die 16-Bit-Zähler verwendet werden. Die Zähler könnten auch als 8-Bit-Zähler programmiert werden, was uns aber keinen Vorteil bringt.

Der Zähler TCE0, der das Rechtecksignal generiert, gibt einen Takt von 3 MHz vor, da so die 10ms Periodendauer erreicht werden.

Zum Nachvollziehen: $f = \frac{1}{T}$ Einheit: $\frac{1}{s} = Hz$ $T = \frac{1}{f}$ \to 0,33 $\mu s = \frac{1}{3MHz}$ $10ms = 0.33\mu s * 30.000$

```
void luftfeuchte()

☐ { /* diese Funktion wird am Ende der Einschaltphase aufgerufen und liest die

      Zaehlerstaende von den Capture-Registern A und B aus und summiert die
      Differenz zwischen Capture B und Capture A */
     uint16 t Zaehler Start;
     uint16 t Zaehler Ende;
     uint16 t Differenz;
   // die Schlaffunktion, die dafuer sorgt, dass die Programmhauptschleife
   // alle 10ms lacuft.
   set sleep mode(SLEEP MODE IDLE); // Modus "lasse nur den Prozessor schlafen"
                                     // sperre Interrupts
                                     // damit die Interrupt-Routine nicht gleich-
                                     // zeitig die "Perioden"-Variable aendert
   Perioden = 0;
   while (Perioden == 0)
   ( // wenn keine Perioden abgelaufen sind, kann der Prozessor weiter schlafen
     sleep_enable();
     sei();
     sleep_cpu();
                                   // jetzt schlaeft der Prozessor, solange O
     sleep disable();
     cli();
   Zaehler_Start = TCE1.CCB;
   Zaehler Ende = TCE1.CCA;
   Differenz = Zaehler Ende - Zaehler Start; //entspricht Kapazitaet
   SummeZaehler += Differenz;
   Anzahl
               += 1;
   Perioden--: // eine Periode ist abgelaufen
     sei():
               // gebe Interrupts wieder frei
```

Abb. 26: Auszug aus dem Quelltext

Nun wird der Luftfeuchtesensor integriert. Die Änderung der Kapazität wird registriert, indem der Spannungsverlauf des Kondensators mit der Rechteckspannung verglichen wird und die Differenz der Zählerstände, die durch Capture-Register zustande kommen, summiert werden.

Die Summe der Zählerstände in 20 Sekunden wird errechnet, indem die Differenzen auf den letzten Zählerständen addiert werden: Summe Zähler += Differenz.

```
void luftfeuchte_messen(uint16_t *luftfeuchte)
      if (Anzahl > 0)
□ {
□#if 0
 usb zeile schreiben("luftfeuchte: ");
 usb int16 schreiben(Anzahl);
 usb zeile schreiben(", ");
 usb_int32_schreiben(SummeZaehler);
 usb_zeile_schreiben("\n\r");
 #endif
          *luftfeuchte = SummeZaehler / Anzahl;
      SummeZaehler = 0;
      Anzahl
                 = 0:
L
 ISR(TCEO CCA vect)
    Perioden = 1;
```

Der Sleep Mode wird eingestellt. Er versetzt den Prozessor für 10ms außer Kraft. Ein Interrupt weckt ihn, der Interrupt wird ausgeführt und der Prozessor kehrt in die Hauptschleife zurück. Dazu wird eine While-Schleife benutzt: Wenn die Periode bei 0 anfängt, wird der Sleep Mode aktiviert. Zuletzt wird der Mittelwert gebildet, indem die Summe der Zählerstände in 20 Sekunden durch die Anzahl der gebildeten Differenzen geteilt wird.

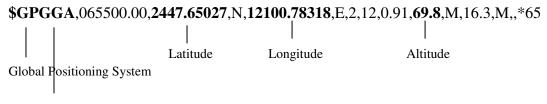
4.3.3 Strahlung

Die Strahlungspulse aus der Photodiode werden im Mikrocontroller durch einen Zähler verarbeitet und abgespeichert. Dazu ist unser Strahlungssensor am Port B0 angeschlossen, an dem im Mikrocontroller ein Analog-Komparator liegt. Der Komparator vergleicht die Pulse mit einer Spannung, die mit dem Digital-Analog-Wandler DACB0 eingestellt wird. Wenn die Pulse die eingestellte Spannung übersteigen, leitet der Komparator Zählpulse über den Event-Channel 0 an den Zähler (Counter). Die Pulse, die durch den Komparator gelangen, gelten als Strahlungspulse und somit entspricht ihre Anzahl pro Zeitintervall der Strahlung.

```
#include <asf.h>
 #include "strahlung.h"
 void strahlung init(void)
₽{
     /* Strom fuer dag Event-System, die Timer, den AC und den DAC sinschalten */ sysclk_enable_module(SYSCLK_PORT_GEN, SYSCLK_EVSYS);
     sysclk_enable_module(SYSCLK_PORT_B,
                                          SYSCLK AC):
     sysclk_enable_module(SYSCLK_PORT_B,
                                          SYSCLK DAC);
     sysclk_enable_module(SYSCLK_PORT_C,
                                          SYSCLK_TCO);
     /* Initialisierung fuer den Timer/Counter */
     TCCO.CTRLA
                   = 0x08; // Event-Kanal 0 als Zaehlereingang TC_CLKSEL_EVCHO_gc;
     TCCO.CTRLB
                   = 0x00; // Zaehler auf "Normal"-Modus, keine Capture-Register
                   = 0x00; // Events deaktivieren
     TCCO. CTRLD
     TCCO.CTRLE
                  = 0x00; // auf "Type0" stellen = 16-Bit-Zaehler
     = 0xcb: // Event hei steigender Flanke, kleine Hysterese (sorgt dafür, dass Komparator erst ab bestimmten Differenz der
     ACB_ACOCTRL
                           // Eingangsspannungen seinen Ausgang umschaltet.)
                           // High Speed Mode, Komparator aktivieren
     /* schalte Komparator 0 auf Event-Kanal 0 */
     EVSYS_CHOMUX = EVSYS_CHMUX_ACB_CHO_gc;
     /* Initialisierung fuer den D/A-Konverter */
     DACB_CTRLC
                  = 0x08; // 3,3V Yersoroung als Referenz, Rechtsausrichtung
     DACE CTRLE
                    = 0x00; // yerwende nur DACO, keine Event-Synchronisierung
     DACB_CTRLA
                    = 0x11; // yerwende internen Analog-Ausgang, DAC aktivieren
     DACB_CHODATA = 2234;
     /*12 Bit = 2^12 = 4096
     Halbe Spannung von 3,3V entsprechen also ca. 2048.
     Bei 3,3V und 4096 Stufen entspricht eine Stufe ca. 0,806mV. (3,3/4096)
     Annahme: ein Strahlungspuls hat ca. 150mV (Messung Oszilloskop)
     Also 150mV / 0,806mV = ca. 186, 2048 + 186 = 2234 */
 void strahlung(void)
T:
 void strahlung_messen(uintl6_t *strahlung)
₽{
     uintl6_t Zaehler;
     /* aktueller Zaehlerstand wird ausgelesen */
#if 0
     Zaehler = TCCO.CNTL;
     Zaehler = Zaehler | (TCCO.CNTH << 8);
     /* Zaehlerstand zurueckliefern */
     *strahlung = Zaehler;
  #else
   *strahlung = TCCO.CNT;
  #endif
 }
```

Abb. 27: Der Quelltext für die Strahlungsmessung

4.3.4 GPS


Der GPS-Empfänger empfängt regelmäßig Signale, die er in Datensätze packt und über die serielle Schnittstelle überträgt. Dafür wurde das NMEA-0183-Datenformat (Protokoll) von der *National Marine Electronics Association* (NMEA) entwickelt. Es ist zum Übertragungsstandard geworden. ²⁹ Der GPS-Empfänger enthält die RS-232-Schnittstelle (Interface), die die Daten nach dem NMEA-Format ausgibt.

Ein Datensatz beginnt mit \$. Dann folgt die Sendeerkennung³⁰, bestehend aus meist zwei Zeichen. Diese Zeichen geben an, an welches Gerät der Datensatz gerichtet ist (Geräte-ID). Darauf folgt die Satzerkennung³¹, bestehend aus meist drei Zeichen (Datensatz-ID). Hinter dieser eben genannten Zeichenkette folgen Datensätze, die durch Kommas unterteilt werden. Die Daten werden im ASCII-Code übertragen.

Der ASCII-Code - American Standard Code for Information Interchange - ist ein standardisierter, 7-Bit-Code (8 Bit bei Umlauten) zum Datenaustausch für Hard- und Softwaresysteme. Er wandelt Ziffern, Buchstaben und Sonderzeichen in Datenworte um, die sich aus Werten von 0 bis 255 (128 Bitmuster; zwei Werte pro Bit) zusammensetzen.

Datensatz

Der für uns wichtige Datensatz lautet GPGGA.

Global positioning system fixed data

In anderer Form:

\$GPGGA, <time>,<latitude>,<north/south>,<longitude>,<east/west>,<pos-indicator>, <satellites>,<hdop>,<altitude>,<unit>,<geoidal-separation>,<unit>,<age>, <station-id>,<checksum>,<cr><lf>

Contents	Example	Unit	Explanation
Latitude	244.65027		ddmm.mmmm
			dd: degree; mm.mmmmm: minute
Longitude	1200.78318		dddmm.mmmm
			ddd: degree, mm.mmmmm: minute
MSL Altitude	69.8	meters	

Tabelle 2: Die GPS-Daten und deren Übersetzung

32

²⁹ Vgl. Nmea.de

³⁰ Vgl. Köhne/ Michael 2008

³¹ Ebd

³² aus Data Sheet - GP-635

Unsere Aufgabe war es, den Breitengrad, Längengrad und die Höhe aus dem Datensatz heraus zu extrahieren und zu speichern. Auch dazu muss ein Programm geschrieben werden. Die Daten werden dann einmal alle zwei Minuten in das EEPROM gespeichert.

Wie der Tabelle zu entnehmen ist, werden die Daten in Grad und Minute angegeben. Diese Art der Darstellung ist für die Verarbeitung durch den Mikrocontroller unpraktisch, da das Rechnen mit Grad-Minuten-Werten nicht direkt unterstützt wird. Wir haben uns entschieden die Daten in Werte umzurechnen, die in 100stel Minuten ausgedrückt werden und dann in eine "normale" Integer-Variable des Programms gespeichert werden kann. Für die Speicherung in das EEPROM wird dann die Differenz zwischen der letzten und der vorletzten Positionsänderung genommen und mit 5 Bits kodiert.

```
case LESEN_BREIT:
 // der Breitengrad wird in 100stel Minuten verarbeitet
   case '0': // es werden Zeichen '0'...'9' erwartet
   case '1':
    case '3':
   case '4':
   case '5':
   case | 6|:
    case '8':
   case '9':
     switch (Dataindex) // Lati = Breitengrad
         LatiData = (datenbyte - '0') * 60 * 10 * 100; // 10er-Stelle der Grade in 100stel Minuten umrechnen
         break:
       case 1:
         LatiData += (datembyte - '0') * 60 * 1 * 100; // += wird auf vorherigen Wert addiert
       case 2:
         LatiData += (datenbyte - '0') * 10 * 100;
         break;
        case 3:
         LatiData += (datenbyte - '0') * 1 * 100;
         break;
       case 4:
         LatiData += (datenbyte - '0') * 1 * 10;
         LatiData += (datenbyte - '0') * 1 * 1;
         break:
     Dataindex += 1; // nun geht es zur naechsten Datenziffer
     break;
   case '.': // Nachkommastellen beginnen jetzt
```

Abb. 28: Auszug aus dem Quelltext

Die Daten werden über die serielle Schnittstelle USART (asynchroner Modus) des GPS-Empfängers ausgegeben, in 8 Datenbits und einem Stoppbit, und dann von unserem Programm wie oben beschrieben interpretiert.

Aus dem Datensatz muss der Breitengrad, Längengrad und die Höhe herausgefiltert werden. Das geschieht in der Reihenfolge:

```
#define SUCHEN 0 /* es wird nach dem Startbyte '$' gesucht */
#define LESEN_TYPE 1 /* es werden die fuenf Type-Bytes gelesen */
#define LESEN_IGNO_BREIT 2 /* das aktuelle Datenfeld wird ignoriert */
#define LESEN_BREIT 3 /* das aktuelle Datenfeld <latitude> wird verwendet */
#define LESEN_IGNO_LAENG 4 /* das aktuelle Datenfeld wird ignoriert */
#define LESEN_LAENG 5 /* das aktuelle Datenfeld <longitude> wird verwendet */
#define LESEN_IGNO_HOEHE 6 /* das aktuelle Datenfeld wird ignoriert */
#define LESEN_HOEHE 7 /* das aktuelle Datenfeld <altitude> wird verwendet */
#define START_BYTE '$' /* das erste Byte des Datenblocks */
#define TYPE_LAENGE 6 /* Laenge des Typ-Feldes */
#define IGNORIEREN_LAENGE 4 /* es werden 4 Datenfelder ignoriert (longitude bis altitude) */
```

Abb. 29: Auszug aus dem Quelltext

Da das GPS-Gerät Datensätze verschiedener Art sendet, mussten wir so programmieren um, den GPGGA-Datensatz zu finden und die gewünschten Daten zu extrahieren. Dazu wird eine "Zustandsmaschine" (State Machine) programmiert. Diese Zustandsmaschine bekommt die Daten der seriellen Schnittstelle als einzelne 8-Bit-Worte (ASCII-Worte). Aus den Zustandsvariablen liest die Zustandsmaschine, was mit welchem Datenwort zu tun ist. Sie sucht ständig nach dem verlangten Datensatztyp. Sie ist ein Programmteil mit vielen if-Abfragen beziehungsweise einer Switch-Anweisung, die nacheinander abgearbeitet werden müssen. Der Mikrocontroller kann das Eintreffen eines Datenwortes über die serielle Schnittstelle mit einem 'Interrupt' dem Programm melden. Das Interrupt ist eine Methode, schnell auf Ereignisse, die in der Hardware registriert wurden zu reagieren. Wenn dieses Ereignis auftritt, unterbricht der Controller das aktuell laufende Programm und ruft die Interrupt-Routine -also unsere Zustandsmaschine- auf. Das Programm wird dann weiter ausgeführt, wenn die Interrupt-Routine beendet wurde. Um das Programm nicht zu stören muss die Interrupt-Route also sehr kurz implementiert sein.

```
// die Zustandsmaschine fuer das Interpretieren der Datenbytes
switch (Zustand)
 case SUCHEN:
   if (datenbyte == START BYTE)
   ( // der Datenblock beginnt
     Zustand = LESEN TYPE;
     Typeindex = 0:
   break;
 case LESEN TYPE:
   if (datenbyte == Type[Typeindex])
   ( // das erwartete Datenbyte im Typ-Feld
     Typeindex++;
     if (Typeindex == TYPE_LAENGE)
     { // das komplette Typ-Feld ist eingelesen und passt
        Zustand = LESEN_IGNO_BREIT; // wenn das Datenfeld gefunden ist, wechselt Programm zum naechsten Fall(case)
   else
   { // das Typ-Feld passt nicht
     if (datenbyte == START_BYTE)
     { // der Datenblock beginnt (??????ein Fehler ist passiert??????)
       Zustand = LESEN TYPE;
       Typeindex = 0;
     else
     { // das empfangene Zeichen ist weder das erwartete Zeichen noch ein Startbyte
       Zustand = SUCHEN; // wieder in den Zustand 'suchen' und nach einem Startbyte suchen
   break; //Interrupt wird gebrochen -> erneuter Zustand
```

Abb. 30: Auszug aus dem Quelltext

4.4 Fertiggestellte Schaltung

Die von uns fertiggestellte Schaltung besteht aus neun Steckleisten (JP), Widerständen (R), sechs einer Leuchtdiode (LED), einer Diode (D), einem Spannungsregler (IC2) einem Taster (DT), einem Keramikkondensator (C1),einem Elektrolytkondensator (C2) und einem integrierten Schaltkreis (IC).

Diese Bauelemente sind entsprechend der Abbildung mit den Sensoren und dem Mikrocontroller verbunden. Der Mikrocontroller steckt auf den Steckleisten JP1 und JP2. Von JP3 aus geht das USB-Kabel zu dem Mikrocontroller. Auf den Steckleisten

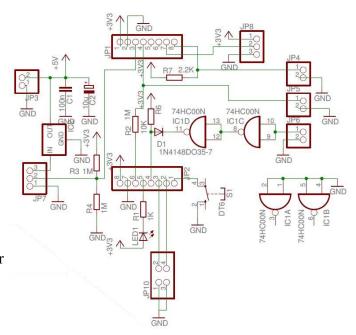


Abb. 31: Schaltplan der fertiggestellten Schaltung

JP4 bis JP6 stecken der Reihe nach der Temperatursensor, der Luftfeuchtesensor und der GPS-Empfänger. Auf JP7 ist die Photodiode angeschlossen. JP8 ist mit dem Luftdrucksensor verbunden und auf JP10 werden die Brücken zum Einstellen der Modi gesteckt.

Ein Keramikkondensator funktioniert wie die meisten anderen Kondensatoren auch, in beiden Kondensatorplatten kann es zu einem Elektronenüberschuss kommen, wodurch dann ein elektrisches Feld entsteht. Der Elektrolytkondensator dagegen ist gepolt und es kann dadurch nur auf einer Seite zu einem Elektronenüberschuss kommen. Der Unterschied des Keramikkondensators zu dem Elektrolytkondensator ist, dass die Kapazität geringer ist.

4.5 Stromversorgung

Wir benötigten zum Versorgen der Schaltung eine 9-Volt Spannungsquelle, damit der Strahlungssensor, den wir zuerst gebaut haben, optimal funktionieren kann. Der Mikrocontroller jedoch, der seine Energie über ein USB-Kabel bezieht, welches üblicherweise 5 V transportiert, arbeitet mit 3,3 V. Auf Grund dieser drei Spanungswerte sind auf der gesamten Schaltung zwei Spannungsregler. Der erste ist zwischen der Spannungsquelle und dem USB-Anschluss und der zweite ist bereits auf dem Mikrocontroller-Board vorhanden.

Während der Testphase haben wir für die Stromversorgung eine 9-Volt-Batterie genutzt. Erst für die letzten Tests und für den Flug haben wir drei 3-Volt-Lithium-Batterien genutzt

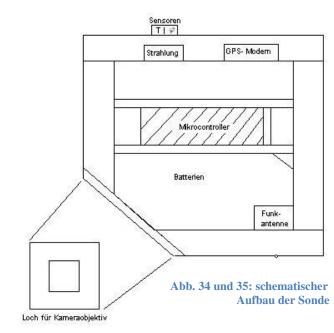
4.6 Kamera

Die GoPro Hero 3 Silver Edition bringt einen 1050 mAh Lithium-Ion Akku mit integrierter Akkuheizung mit. Mit dem Akku wiegt die Kamera 74 Gramm. Auf unserem Ballonflug wünschten wir beste Qualität zu einer möglichst langen Laufzeit. Mit der HD-Auflösung 16:9 (1920x 1080 Pixel) und 60 Bildern pro Sekunde (60 fps)³³ kommt die Kamera auf eine Laufzeit von zwei Stunden. Wir schalteten außerdem die Nebenfunktionen Wi-Fi und Wi-Fi – Remote ab, sodass die Kamera auf eine Akkulaufzeit von 2,15 h kam. Aus dem

Abb. 32: Kameraausstattung

Datenblatt ist zu entnehmen, dass sie bei 30 fps sogar drei Stunden Videos aufzeichnen kann, was uns aber nicht überzeugt.³⁴ Um die Akkulaufzeit zu verdoppeln, haben wir uns zusätzlich ein Battery-BacPac besorgt.

Abb. 33: Speichermedium


Für die Videospeicherung verwenden wir eine 64 Gigabyte Micro-SDXC (Klasse 10) Karte vom Hersteller *SanDisk*. So ist eine optimale Speicherkapazität gewährleistet.

34

³³ Vgl. GoPro Benutzerhandbuch S.22

³⁴ Vgl. GoPro 2013

19 cm

4.7 Bau der Sonde

Wir verwendeten für den Bau unserer Sonde eine mittelporige Dämmplatte aus Polystyrol-Hartschaum in 3 cm Dicke. Solche Platten sind besonders stabil.

Unsere Sonde sollte nicht zu groß sein, sondern den Gerätschaften gut angepasst, um Gewicht zu sparen. Wir entschieden uns für eine quadratische Grundfläche von 19 x 19cm. Schließlich schrägten wir eine Ecke zu 45° ab, da die Kamera mit einem 150° Weitwinkel Videos aufzeichnet und wir so nahezu perfekt Horizont, Erdboden und Himmel filmen.

Die abgeschrägte Seite besteht aus einer 1 cm dicken Styroporplatte mit einem rechteckigen Loch. Sie ist dünner, damit die Sicht für das Weitwinkelobjektiv der Kamera nicht gestört wird. Daran montierten wir die Kamera mit einem Gummiband.

In der oberen Wandseite sind eingeschnittene Fächer für GPS-Modem und Strahlungssensor. Aus der Sonde sind Luftfeuchtesensor und Temperatursensor nach außen geführt (Abb. 36). Der Luftdrucksensor wurde in der Sonde betrieben, da der Druckwert innen und außen gleich ist. Den Kern bildet der Mikrocontroller in der Mitte der Sonde.

Abb. 36: Sensoren

Abb. 37: Funkantenne

An ihm wurden drei Batterien per USB- Anschluss angeschlossen, die sich am Boden der Box befanden. Ein weiteres Fach ist für den Funkempfänger vorgesehen, woran sich die Funkantenne befand, die die Zeitdaten der Satelliten empfing. Sie ragte aus der Sonde (Abb. 37).

In der Sonde waren die Geräte eng beieinander, Störungen treten deshalb schnell auf. Daher schirmten wir diese durch Alufolie in der Box ab (Abb. 38). Vor allem die Photodiode und die Verstärkerschaltung reagierten auf Störungen sehr empfindlich. Durchgeführte Tests beweisen, dass die Funksignale am störendsten sind. Weitere Alufolie war an der Funkantenne angeklebt, damit eine Gegenmasse zu den Funksignalen existiert (Abb. 37).

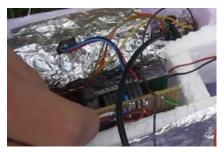


Abb. 39: Sonde mit Schnur

Abb. 40: Inneneinrichtung

4.8 Testphase

4.8.1 Strahlungssensor

Test 1

Um die Funktion der Photodiode zu testen, schließen wir sie noch unverpackt an ein Stromversorgungsgerät mit 9 Volt Spannung. Dazu schließen wir ein Oszilloskop an die Masse (Abb. 42). Wir haben uns für 9 V entschieden, weil sie ein handelsüblicher Batterieblock liefert. Der Mikrocontroller wird mit 3,3 Volt betrieben, wobei diese Spannung für den Betrieb der Photodiode zu gering ist. Mit den 9 Volt reagiert die Photodiode empfindlicher. Bei Tageslicht sehen wir bloß Störungen bzw. können Impulse durch den Lichteinfall nicht von dem Rauschen trennen (Abb. 41). Schalten wir dagegen eine Lichtquelle in nächster Nähe ein, kommt ein anderes Resultat zum Vorschein. Die Lampe funktioniert mit Wechselstrom und schaltet sich nicht sichtbar 50mal pro Sekunde ein und aus. Der Graph ändert sich deshalb 43). weil die periodisch (Abb. Photodiode die Helligkeitsänderung aus dem Wechselstrom misst. Wir können dadurch von der Skala des Oszilloskops ablesen, in welcher periodischen Zeit die Lampe Licht aussendet. Das Testergebnis beweist die Funktionalität unserer Schaltung: Alle 10ms ist ein Ausschlag abzulesen, d.h. alle 10ms misst die Photodiode bei 50 Hz Netzspannung (positive + negative Halbwelle des Stroms) einen Impuls, welche beim Einschalten, sowie Ausschalten der Lampe am Oszilloskop indirekt abzulesen sind, da die Photodiode nicht zwischen den Schaltvorgängen unterscheidet. Die Kapazität des Kondensators im Verstärket ist zu klein, um die komplette sinusförmige Halbwelle Spannungskurve am Oszilloskop zu sehen (Abb. 44).

Abb. 41: Test ohne Abschirmung 1

Abb. 42: Versuchsaufbau

Abb. 43: Test ohne Abschirmung 2

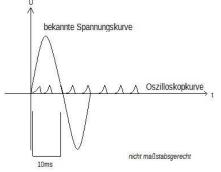


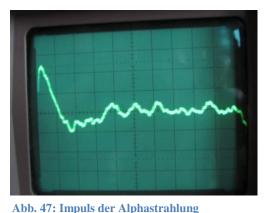
Abb. 44: Vergleich der Kurven

Test 2

Abb. 45: Glühstrumpf

Um die Photodiode auf Strahlenmessung zu testen, eignet sich ein Glühstrumpf hervorragend. Ein Glühstrumpf enthielt früher Thorium als Oxid, das ein natürliches radioaktives Element ist. Unser Glühstrumpf enthält dieses radioaktive Element. Der Glühstrumpf wird dazu in Thoriumnitrat getränkt. 35 Thoriumnitrat ist nicht schädlich, solange es nicht durch z.B. Schleimhäute in den Körper gelangt: die freiwerdende Alphastrahlung wird schon durch die oberste Hautschicht abgehalten.

Thoriumnitrat besitzt eine spezifische Aktivität von 3.93 kBq/g. 1 Becquerel (Bq) entspricht


einem radioaktiven Zerfall pro Sekunde, also dem Atomkernzerfall/s. ³⁶ Der Glühstrumpf emittiert vorrangig Betastrahlung, geringer Alphastrahlung, wie aus unseren Messungen hervorgeht.

Die Photodiode betreiben wir mit einer Spannung von 9 V, da sie so empfindlich reagiert und besser Strahlung detektiert. Für die ersten

Tests Abb. 46: Versuchsaufbau

verwenden wir zusätzlich ein Stromversorgungsgerät und Oszilloskop. Das Messgerät in Alufolie verpackt, legen wir auf den Glühstrumpf (Abb. 46). Die Impulse werden uns am Oszilloskop angezeigt (Abb. 47). Pro Bildschirmeinheit sind 50 mV eingestellt, d.h. in der Abbildung ist der Hochpunkt bei etwa 120 mV abzulesen. Dieser starke Ausschlag zeigt das Aufschlagen eines Betateilchens auf die empfindliche Fläche der Photodiode an.

Da beim Betazerfall die Betateilchen unterschiedliche Energien annehmen können, haben Alphastrahlung gemessen; ein grafischer Unterschied hat sich hierbei herausgestellt. Wird der Messversuch, anstatt im Gebäude, im Freien durchgeführt, können mit etwas Glück auch Gammateilchen detektiert werden, wobei die meisten von der Erdatmosphäre absorbiert werden. Bei den angezeigten Impulsen handelt es sich um Betastrahlung, möglicherweise auch Alphastrahlung, die durch die dünne Folie abgeschwächt werden. Somit kommt es nur alle paar

Sekunden, neben Störungsimpulsen zu einem Ausschlag. Die vorgenommenen Einstellungen am Oszilloskop werden mit unserer Software automatisch vorgenommen.

³⁵ Vgl. Seilnacht (o.J.)

³⁶ Mevers Grosses Taschenlexikon: B- Becquerel. Mannheim 2001

4.8.2 Strahlungsdetektor

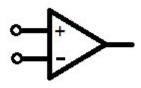
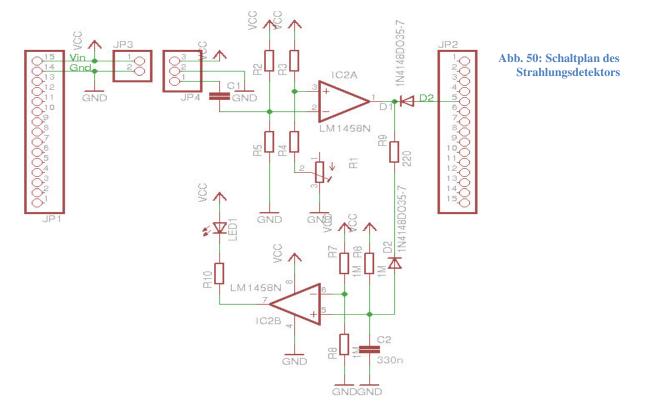



Abb. 48: Operationsverstärker

$$U_D = U_P - U_N$$

(pos. Spannung – neg. Spannung)
 $U_A = V_D * U_D$

hatten wir die Idee, eine Schaltung Operationsverstärkern zu bauen, um die Impulse verstärken. Mit einem Operationsverstärker können wir die kleinen Signale der Strahlungsmessung verstärken. Ein Operationsverstärker hat drei Anschlüsse: einmal den nichtinvertierenden (+) und den invertierenden (-) Eingang, und den Ausgang (Abb. 48). Zwischen positivem und negativem Eingang liegt die Differenzspannung U_D, welche um einen vorgegebenen Wert verstärkt wird. Man spricht hier Differenzverstärkung V_D, die vom Typ abhängt. Wir verwendeten zwei Operationsverstärker linear.

Ein weiteres wichtiges Bauteil, das wir einbauten, ist der Trimmpotentiometer 3386 vom Hersteller *Bourns* (Abb. 49). Ein Potentiometer, kurz Poti, ist ein regelbarer Widerstand, ein bekanntes Bauteil z.B. als Lautstärkeregler in Radios. Unser Trimmpotentiometer hat einen Schraubendreherschlitz, um den Spannungsabgleich per Hand einzustellen. Der Vorteil dieses Typs ist, dass sich die Einstellung nicht ändern kann, da der Widerstand fest Abb. 49: Trimmeingestellt wird.

Auf die Bauelemente JP1 und JP2 wird der Mikrocontroller gesetzt. An JP3 wird die 9 Volt-Batterie zur Spannungsversorgung angeschlossen und an JP4 der Strahlungssensor. Die LED1 blinkt bei Impulsveränderungen auf.

Funktionsweise

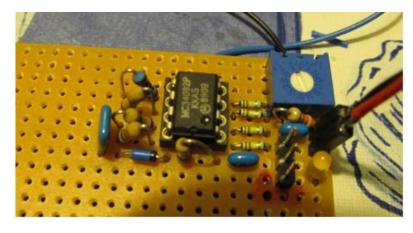
Wenn ein Alphateilchen auf die Photodiode trifft, sendet sie einen Impuls aus, welcher auf den Kondensator JP4 trifft. Der Impuls sorgt für eine Spannungsverschiebung, sodass aus dem Kondensator eine höhere Spannung gelangt. Wenn dagegen kein Puls durch den Kondensator kommt, ändert sich die Spannung nicht.

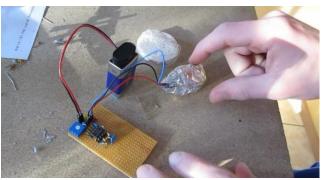
Zwei Widerstände in Reihe geschaltet, wirken als Spannungsteiler, d.h. die Gesamtspannung teilt sich entsprechend der Widerstandswerte auf die Widerstände auf (2. Kirchhoffsche Regel). Der Teilwiderstand aus R2 und R5 bewirkt, dass am Minus-Pol des Komparators die halbe Versorgungsspannung liegt, genauso wie am Plus-Pol durch die Widerstände R3 und die Kombination aus R4 und dem Potentiometer eine Spannung eingestellt wird. Das Vorgehen sorgt dafür, dass am positiven Eingang eine höhere Spannung anliegt: Dadurch, dass der Poti regelbar ist, sind Widerstand R4 und Poti in Summe > R3.

Die Diode D2 wird in Sperrrichtung betrieben. Wird kein Impuls empfangen, verhindert die Diode, dass die Spannung in den Mikrocontroller gelangt. Die Spannung darf nicht über 3,3V Betriebsspannung liegen. Wird ein Impuls ausgesendet, gelangt dieser an den Controllereingang JP2-5, der dann im Mikrocontroller gezählt und abgespeichert wird.

Ein Impuls, den der Detektor vom Strahlungssensor erhält ist so kurz, dass ein Aufleuchten der LED für uns nicht sichtbar wäre. Um bei Eintreffen eines Strahlungspulses ein sichtbares Blinken zu erzeugen, haben wir eine Schaltung entwickelt, die das Leuchten der LED verlängert. Hierzu wird die Lade- und Entladezeit des Kondensators C2 verwendet, danach wird der zweite Komparator des Chips dazu verwendet die LED zu schalten.

Das ist der Strahlungsdetektor:




Abb. 51: Foto des Strahlungsdetektors

Die Bauteile JP1 und JP2 haben wir vernachlässigt. Ursprünglich sollte diese Schaltung Strahlung auf dem Ballonflug messen, doch wir wendeten uns von dieser ab, weil wir von der Schule einen Mikrocontroller gestellt bekommen haben, der die Funktionalität dieser Schaltung dann ersetzen konnte. Wir hatten vorher an einen einfacheren Mikrocontroller gedacht.

Prüfung

Wir testen das Detektieren von Strahlungsimpulsen mit der Photodiode. verwenden wir neben Dazu Strahlungssensor und Strahlungsdetektor den Glühstrumpf und eine 9V- Batterie (Abb. 52). Den in Alufolie verpackten Strahlungssensor schließen wir an die Steckverbindung des Strahlungsdetektors,

der Akku wird zum Betrieb der

Mess- Abb. 52: Versuchsaufbau

Abb. 53: Stiftleiste

schaltung an die Stiftleiste (Abb. 53) geschlossen. Mit Schraubendreher stellen wir das Potentiometer ein. Zunächst legen wir den Strahlungssensor auf den Glühstrumpf und sehen die LED aufblinken. Sie blinkt auf, wenn ein Puls von der Photodiode ausgesendet wird. Wenn der Potentiometer zu weit aufgedreht ist, also der Widerstandswert zu hoch ist, blinkt die LED nicht, weil keine Impulse durch die Schaltung gelangen.

Wenn der Widerstand zu klein eingestellt ist, leuchtet die LED durchweg, weil der Spannungsabgleich zu gering ist und auch die Rauschpulse gemessen werden.

Dieser Versuch beweist wiederum, dass auch Alpha- bzw. Betastrahlung, wenn auch im geringeren Maße, durch dünne Alufolie gelangt.

Der Strahlungsdetektor diente lediglich zur Prüfung der Photodiode auf ihre Funktionalität. Die Strahlungsmessung regelte unsere Software auf dem Ballonflug.

4.8.3 Die Schaltung

Die Schaltung haben wir mit mehreren Verfahren getestet und kalibriert. Unter anderem haben wir die Temperatur, den Luftdruck und die Luftfeuchte im Kühlschrank bei ungefähr 8 °C, in der Tiefkühltruhe bei ungefähr -30 °C und bei einer Zimmertemperatur von ungefähr 22 °C gemessen und auf dem Mikrocontroller gespeichert. Wir haben auch extra die Schaltung mit dem Luftdrucksensor in die Vakuumpumpe gelegt, um dort den Luftdrucksensor zu kalibrieren.

Die Methode, die wir dabei nutzten ist, dass wir die gemessenen Daten in der Bitschreibweise gespeichert und diese Werte in das Programm übertragen haben, welches nach dem Flug die gespeicherten Werte, die zwischen 0 und 4095 liegen, in die für die jeweilige physikalische Größe typische Einheit übersetzt. Ein weiterer Zweck dieser Tests war, herauszufinden, ob wir die Quelltexte ohne Fehler geschrieben und die Schaltung richtig aufgebaut haben.

In einem weiteren Test haben wir die Langzeittätigkeit der Schaltung getestet, dabei haben wir alle Sensoren, das Funkgerät und den GPS-Empfänger an die dafür vorgesehene Position in der Schaltung gesteckt, dazu eine Stromquelle genutzt, die vergleichbar mit der Stromquelle, die wir für den Flug nutzten, war. Wir führten den Test bei einer Fahrradtour in der Region Brieselang durch, die länger als zwei Stunden gedauert hat. In dieser Zeit ist keines der Geräte ausgefallen und alle Werte waren zufriedenstellend, weshalb wir schlussfolgerten, dass der gesamte Flug ohne Probleme aufgezeichnet werden kann.

4.8.4 GPS

Das GPS-System wurde von uns mehrmals getestet. Wir haben geprüft, ob die Daten

richtigerweise im EEPROM gespeichert wurden und auch beim Auslesen angezeigt werden. Das Auslesen gelang beim ersten Test nicht. Dieses Problem haben wir durch das Ändern im Quelltext behoben.

Mithilfe eines Walkie-Talkies haben wir geprüft, ob Daten vom Funkgerät der Sonde gesendet wurde. Alle zwei Minuten, bei Empfangen eines Datenpakets, meldete sich das Walkie-Talkie mit einem akustischen Signal.



Abb. 55: Die GPS-Daten werden nicht korrekt ausgegeben

Abb. 54: Das von uns genutzte Funkgerät

4.8.5 Kamera

Test 1

Wir haben die Kamera, samt Battery-BacPac und Micro-SD Karte eingeschaltet. Dabei haben wir den gewünschten Modus (filmen) eingestellt und die Kamera laufen lassen. Wir kamen hier auf eine Laufzeit von rund vier Stunden.

Test 2

Die Kamera musste den niedrigen Temperaturen in großer Höhe standhalten, da ihr Objektiv aus der Sonde herausragte. Im wasserdichten Gehäuse konnte es während des Ballonauf- und abstiegs zu Kondensation kommen. Um ein reales Szenario nachzubilden, legten wir die Kamera im Gehäuse mit Battery-BacPac und SD-Karte eingeschaltet, in den Kühlschrank. Hier erreichte die Kamera eine Laufzeit von 4 h 54 min.

5. Flugvorbereitung

5.1 Nutzlast

Die Nutzlast, die letztendlich von dem Wetterballon getragen wurde, bestand aus der Sonde, die die Sensoren für Temperatur, Luftdruck, Luftfeuchte und Strahlung gemeinsam mit dem Mikrocontroller, dem GPS-Empfänger, der Kamera, dem Funkgerät, um uns die Position des Wetterballons zu übermitteln und der Stromversorgung beinhaltete. Dabei war die Sonde mit 200 Gramm am schwersten, gefolgt von der Kamera, die 170 Gramm mit wasserdichter Hülle wog. Die Sensoren und der Mikrocontroller zusammen wogen weniger als 50 Gramm, sodass wir weniger Masse in die Atmosphäre brachten, als die vom Hersteller des Wetterballons garantierten 1000 Gramm.

5.2 Mengenberechnung des Ballongases

Vorerst musste die zu benötigende Menge an Helium berechnet werden. Der Ballon sollte nicht mit zu wenig Helium gefüllt werden, da so der Flug länger dauern würde. Es ist zu beachten, dass unsere Geräte maximal vier Stunden durchhalten. Fest steht, der Ballon muss Auftrieb haben. Auftrieb entsteht, wenn das Ballongas dasselbe Volumen wie Luft, aber eine geringere Dichte hat. Dadurch sinkt die Gewichtskraft. Der Auftrieb ist das Gewicht der verdrängten Luft.

Es wird zuerst einmal das zu benötigende Volumen berechnet, damit der Ballon schwebt. Die Gewichtskraft muss mit der Auftriebskraft im Gleichgewicht stehen. Dazu wird die Auftriebskraft mit der Gewichtskraft gleichgesetzt.

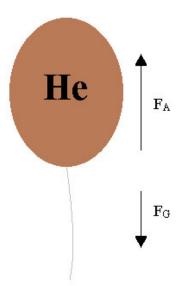


Abb. 56: Schema des Kräfteungleichnis

Die Formel der Auftriebskraft:

$$F_A = \rho \cdot V \cdot g$$

Die Formel der Gewichtskraft: $F_G = m \cdot g = (m_N + m_H) \cdot g = (m_N + \rho_H \cdot V) \cdot g$ Es wird die Gesamtmasse eingesetzt, d.h. Masse der Nutzlast m_N und Masse des Gases m_H

Gleichgesetzt:
$$F_{A} = F_{G}$$

$$\rho_{L} \cdot V \cdot g = (m_{N} + \rho_{H} \cdot V) \cdot g$$

$$\rho_{L} \cdot V = m_{N} + \rho_{H} \cdot V$$

$$\rho_{L} \cdot V - \rho_{H} \cdot V = m_{N}$$

$$V(\rho_{L} - \rho_{H}) = m_{N}$$

$$V = \frac{m_{N}}{\rho_{L} - \rho_{H}}$$

Da wir den Ballon vom Erdboden starten, wird die Dichte der Gase bei 0°C und 1013 hPa eingesetzt (Anfangsdichte). Wir nehmen an, dass die Nutzlast 1,5 kg beträgt (darin auch Fallschirm).

Werte eingesetzt:
$$V_{H} = \frac{1,5kg}{1,29\frac{kg}{m^{3}} - 0,178\frac{kg}{m^{3}}}$$
$$V_{H} = 1,3489m^{3} = 1348,9L$$

Unsere Heliumflaschen haben einen Druck von 100 bar. Das bedeutet, die 1348,9 Liter sind 100-fach "zusammengepresst" und in den Heliumflaschen zu 13,489 Liter komprimiert. Uns sagt dieses Ergebnis, dass wir zwei Heliumflaschen á 10 Liter benötigen, da wir noch nicht den Auftrieb berechnet haben. Die Menge für den Auftrieb legten wir dann beim Start vor Ort fest, da auch die Wetterverhältnisse zu berücksichtigen sind.

5.3 Fallschirm

Wir verwendeten einen Fallschirm der Bundeswehr. Er hat den Vorteil, dass er sich durch ein fest angenähtes Netz nicht verheddern kann. Wir schlussfolgerten, dass seine Wirkung in der dünnen Luft noch gering sein wird. Fehler, die dann durch den schnellen Fall und die komprimierte Speicherung nach dem Platzen entstehen, können toleriert werden, da bereits aus der Steigphase gute Messwerte vorliegen sollten.

Wir haben festgestellt, dass sich der Fallschirm relativ schnell öffnet und auch seine Breite hat uns auf Tragfähigkeit überzeugt.

5.4 Flugantrag

Wir haben drei mögliche Termine festgelegt, an denen wir starten können, den 13.09., 20.09. und 27.09.2013. Der Flugantrag wurde am 1. September 2013 geschickt. Die Genehmigung kam fünf Tage danach. (siehe Anhang)

6. **Der Ballonflug**

Wir haben den Ballon am 27.09.2013 um 12:40 Uhr gestartet. In den zwei Stunden Flugzeit legte er eine Strecke von 150 km zurück. Nach einer Stunde und 25 Minuten platzte die Ballonhülle in einer Höhe von 20077 Metern. In den zwei Stunden Flugzeit erreichte der Ballon Höchstgeschwindigkeiten von über 130 km/h

Die Position des Wetterballons erhielten wir von dem Funkgerät, das in die Sonde eingebaut wurde und die GPS-Datensätze aussendete. Die Datensätze wurden an das Auto, mit dem wir den Wetterballon verfolgt haben, gesendet, dort verarbeitet und auf die Seite aprs.fi gestellt.

6.1 **Ballonstart**

Der erste Termin erschien uns zu knapp, da wir mit den Testläufen noch nicht fertig waren. Der Tag des zweiten Termins war verregnet und bot wenig Sicht über die Wolken. So war der dritte Termin unbedingt wahrzunehmen. Trotz schlechter Wettervorhersagen ergaben sich beste Flugbedingungen: Ein fast wolkenfreier Himmel zur Startzeit und ein böiger Nordwestwind.

Abb. 59: Das Equipment am Startplatz

Wir trafen uns mit Herrn Glagow, Herrn Lenz, und Frau Drosedow, morgens um 10 Uhr in der Schule, um die Heliumflaschen abzuholen. In zwei Fahrzeugen fuhren wir zum Flugplatz am Gollenberg. Um circa 11:15 Uhr kamen wir an. Der Himmel lockerte auf, der Start konnte sofort stattfinden. Wir befüllten die Ballonhülle mit dem Helium unter Verwendung eines Federkraftmessers. An einem Ende Federkraftmessers hing die Masse der Nutzlast, am

anderen Ende der befüllte Ballon. Mithilfe einer vom Hersteller der Ballonhülle bereitgestellten Tabelle wurde die Kraft gemessen. Geplant war, dass der Ballon mit 1,3 Kubikmeter Helium gefüllt wird, doch aufgrund des recht starken Windes befüllten wir ihn mit mehr Helium. Denn je weniger Helium im Ballon ist, desto langsamer steigt er und legt einen weiteren Weg zurück, und desto später würde er platzen, da er sich weiter ausdehnen kann, würde dementsprechend auch höher steigen.

Abb. 60: Die letzten Startvorbereitungen

vorbereitet, die Stromversorgung verbunden, der Mikrocontroller gestartet, der dann schon die Messdaten aufnahm, und die Kamera präpariert. Die Sonde verschlossen wir mit genügend Klebeband fest, damit der Wind nicht in die Box weht. Anschließend schrieben wir die Nachricht "Schulprojekt, Bitte anrufen! Mobiltelefonnummer" auf die Sonde.

Als der Ballon befüllt war, befestigten wir die Sonde in einer Distanz von zehn Metern zum Ballon an einer Drachenschnur. Die Sonde ist so weit vom Ballon entfernt angebracht, damit sie leichter zu finden und zu befreien ist, wenn sie zum Beispiel in einem Waldgebiet landet und zwischen die Bäume hindurch fällt. Der Fallschirm befand sich nah am Ballon.

Abb. 61: Der Start

Kurz vor 13:00 Uhr standen wir bereit, mit der Sonde in der Hand.

Wir warteten erst, dass sich der Wind legt, da dieser den Ballon zum Erdboden drückte. So würde die Sonde auf dem Boden mitgeschliffen. Wir merkten, dass wir mit dem Wind mitlaufen müssten, und so erfolgte der Start. Schon beim Halten des Ballons war die Zugkraft zu spüren, nun stieg er sehr schnell auf. Gleich nach dem Start packten wir unsere Ausrüstung zusammen und stiegen in die Autos, um den Ballon zu verfolgen.

6.2 Ballonlandung

Der Ballon landete um 14:40 Uhr, knappe 1,3 km nördlich von Leipe im Spreewald. Zehn Minuten zuvor haben wir den Kontakt zu dem Funkgerät verloren. Als wir um 16 Uhr in Leipe ankamen waren wir für kurze Zeit nah genug am Landepunkt, dass wir ein Signal empfangen konnten. Wir haben gleich Wege gesucht, zu dem Wetterballon zu gelangen. 18:30 Uhr haben wir den Ballon in einer Baumreihe an einem Kanal gefunden. Dabei stellten wir fest, dass der Fallschirm während des Fluges verloren gegangen ist.

7. Auswertung

Auf dem Mikrocontroller befanden sich die Messwerte im EEPROM, dem Speicher. Die Werte sind dort analog gespeichert, d.h. sie sind in einem begrenzten Wertebereich abgespeichert. Wie im Kapitel 4.2. Mikrocontroller beschrieben, haben wir die Software so geschrieben, dass die Zehnerpotenzen bzw. die Kommastellen so verschoben werden, dass die Datenmenge auf dem Speicher von 2048 KByte passen. Damit gibt der Mikrocontroller umgewandelte Zahlen aus, die zurück umgewandelt werden müssen. Die Ausgabe im online-Modus sieht folgendermaßen aus:

84: 85: 86: 87: 88:	druck 2580 [799.9hPa] druck 2557 [793.3hPa] druck 2533 [786.5hPa] druck 2510 [779.9hPa]	temp 2535 [43.0C] temp 2531 [42.7C] temp 2527 [42.5C]	feucht 1509 [68.3%] feucht 1509 [68.3%] feucht 1509 [68.3%] feucht 1508 [68.3%]	hoehe 1919 hoehe 1991 s hoehe 2058 hoehe 2127 hoehe 2200 hoehe 2271	trahlung -92 g	ps 5243.16000 01225.67000
89: 90: 91: 92: 93:	druck 2466 [767.2hPa] druck 2445 [761.2hPa] druck 2423 [754.9hPa] druck 2401 [748.6hPa] druck 2379 [742.3hPa]	temp 2516 [41.8C] temp 2513 [41.6C] temp 2513 [41.5C] temp 2510 [41.4C] temp 2508 [41.3C]	feucht 1506 [68.2%] feucht 1506 [68.2%] feucht 1506 [68.2%] feucht 1505 [68.2%] feucht 1505 [68.2%]	hoehe 2341 hoehe 2409 s hoehe 2481 hoehe 2554 hoehe 2622	trahlung 9 g	ps 5242.76000 01226.05000
94: 95: 96: 97: 98: 99:	druck 2339 [730.8hPa] druck 2319 [725.1hPa] druck 2301 [719.9hPa] druck 2282 [714.5hPa]	temp 2503 [40.9C] temp 2498 [40.6C] temp 2497 [40.5C] temp 2500 [40.7C]	feucht 1503 [68.2%] feucht 1503 [68.2%] feucht 1502 [68.1%] feucht 1502 [68.1%]	hoehe 2689 hoehe 2753 hoehe 2821 s hoehe 2887 hoehe 2952 hoehe 3021	trahlung 110 g	ps 5242.44000 01226.73000
100: 101: 102: 103: 104:	druck 2242 [703.0hPa] druck 2223 [697.6hPa] druck 2204 [692.1hPa] druck 2184 [686.4hPa] druck 2163 [680.3hPa]	temp 2498 [40.6C] temp 2500 [40.7C] temp 2502 [40.7C] temp 2502 [40.9C] temp 2501 [40.8C]	feucht 1502 [68.1%] feucht 1502 [68.1%] feucht 1503 [68.2%] feucht 1503 [68.2%] feucht 1504 [68.2%]	hoehe 3089 hoehe 3159 hoehe 3229 s hoehe 3303 hoehe 3378	trahlung 211 g	ps 5241.92000 01227.71000
107: 108:	druck 2120 [668.0hPa] druck 2099 [662.0hPa] druck 2078 [656.0hPa] druck 2058 [650.2hPa]	temp 2494 [40.3C] temp 2490 [40.1C] temp 2490 [40.1C] temp 2487 [39.9C]	feucht 1506 [68.2%] feucht 1507 [68.3%] feucht 1506 [68.2%]	hoehe 3452 hoehe 3530 hoehe 3609 hoehe 3690 s hoehe 3766 hoehe 3843	trahlung 110 g	ps 5241.25000 01228.87000
		Temperatur	Luftfeuchtigkeit	Höhe 3924 Höhe	Strahlung	Längen- Breitengrad

Tabelle 3: Ausgabe der Messwerte

Die Werte in den eckigen Klammern entstammen von unseren Tests der Sensoren unter verschiedenen Klimabedingungen. Sie sind aus einem von uns vorgegebenen Wertebereich mit den hier gemessenen analogen Zahlen errechnet worden.

Wir haben zwei weitere Programme mit der Programmiersprache Python geschrieben. Das erste Programm speichert die Werte in einer Datei ab, das zweite wandelt sie in Werte mit den richtigen Einheiten um. Die konvertierten Daten sind in einer Excel-Tabelle im Anhang dargestellt. In den nächsten Abschnitten beziehen wir uns darauf.

Zur Tabelle

Die Tabelle weist nicht den kompletten Flug auf, weil die Spannungsversorgung für den Mikrocontroller kurz vor dem Aufprall abriss und somit die letzte Speicherung auf einer Höhe von ungefähr 200 Metern erfolgte. Dadurch sind einige Daten am Landeort nicht aufgezeichnet worden.

Wir beschreiben aus den gemessenen Werten das Wettergeschehen. Es ist anzumerken, dass eine exakte Wetterbestimmung ausgeschlossen ist und sie erst durch ein Studium der Meteorologie gewährleistet ist. So wirken mehrere Faktoren ein, wie Strömung, die selbst von der Feuchtigkeit abhängig ist und Windgeschwindigkeit. Zudem wirkt das Gelände mit seinen Höhenmetern ein. Deshalb orientieren wir uns am Meeresspiegel.

7.1 Temperatur

Die Temperaturmessung zeigt aussagekräftige Werte an, die mit der Höhe in einem Diagramm dargestellt sind.

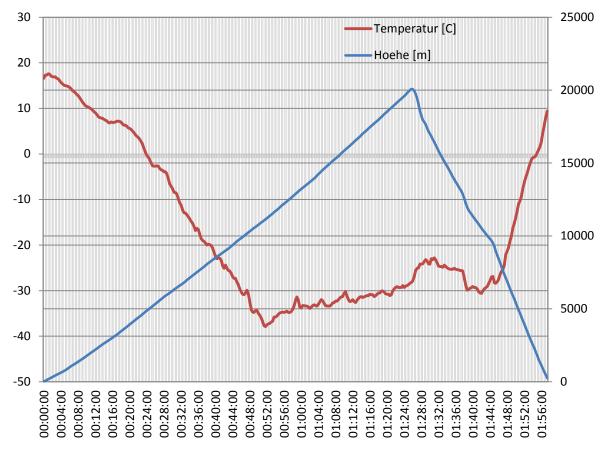


Diagramm 4: Temperatur (links) und Höhe im Verlauf des Fluges

Der Ballonstart begann bei 16,6 °C. Auf einer Höhe von 274 Metern erreichte der Sensor seinen Temperaturhöchststand von 17,1 °C. Bei -37,9 °C ist ein Tiefstand abzulesen, am Landeort 9,4 °C.

Einteilung der Atmosphäre

Wenige Planeten besitzen eine Atmosphäre, die auf ihm das Leben ermöglicht. Die Erde besitzt auch wegen ihrer großen Masse eine Atmosphäre. Sie wird durch die Erdanziehungskraft ermöglicht, wodurch die Gase Stickstoff, Sauerstoff, Edelgase (He, Ar,...) und Spurengase (CO₂, O₃,...)³⁷ in Erdnähe bleiben und den Menschen die Atmung ermöglichen und vor tödlicher Strahlung schützen.

Die Erdatmosphäre kann nach verschiedenen Gesichtspunkten eingeteilt werden. So teilen und beurteilen wir sie nach dem Temperaturverlauf. Darunter zählen in aufsteigender Reihenfolge Troposphäre, Stratosphäre, Mesosphäre, Thermosphäre und Exosphäre. Die für uns relevanten (thermischen) Luftschichten sind Troposphäre und Stratosphäre (bis 50 km Höhe³⁸).

³⁷ Vgl. Schönwiese, 2003, S. 23

³⁸ Vgl. Deutscher Wetterdienst, 2013

In der Atmosphäre kommt es zu horizontalen Bewegungen durch die Einwirkung der Sonnenstrahlung und ihre Wechselwirkung. Die Schwerkraft gleicht dieses System aus, sodass die Massen in der Atmosphäre in ein hydrostatisches Gleichgewicht gebracht werden. Dieser Effekt lässt sich an den Wolken beobachten, die häufig eine glatte Fläche bilden und sich auf gleicher Höhe befinden. Somit lässt die gesamte Erdatmosphäre einen horizontalen Schichtenaufbau zu.³⁹

Die Breite der Luftschichten hängt von der Jahreszeit und dem Standort ab. Zwischen 0 bis etwa 12 km ist die Troposphäre und in ihr, oberhalb des Übergangs in die Stratosphäre, die Tropopause. In einer Höhe zwischen 12 bis 50 km befindet sich die Stratosphäre mit der Ozonschicht, die sich durch einen hohen Ozongehalt bildet. Das Ozon absorbiert einen Großteil der kurzwelligen Sonnenstrahlung.⁴⁰

Zusammenhang

Unsere Messung ergibt, dass nach 100 Metern die Temperatur um ca. 1 Grad zunimmt. Die Erdoberfläche wird durch die Sonnenstrahlung erwärmt. Die Wärme steigt in Luftströmen vom Erdboden wieder auf und erwärmt die ersten Höhenmeter, doch dieses Phänomen hält nicht lange an, denn es kommt zu einer Vermischung in der Luftschicht⁴¹ und die Temperatur sinkt: Bei einer Höhe von 326 Metern ist die Temperatur um 0,2 Grad gesunken und bildet den Anfang für den Temperaturabstieg. Die Temperatur fällt in einer Höhe von 11140 Metern nahezu linear auf -37,9 °C ab. Die Erklärung dafür ist, dass der Luftdruck in der Troposphäre abnimmt und aufsteigende erwärmte Luft aufgrund ihrer abnehmenden Dichte einen Auftrieb erfährt. In der großen Höhe nimmt die Dichte ab, die aufsteigende Luft dehnt sich aus und kühlt ab.

Der Wetterballon erreicht damit sein Temperaturminimum, danach steigt die Temperatur langsam an. Hierbei hat der Ballon die Troposphäre verlassen und steigt in der Stratosphäre weiter auf. Während des weiteren Aufstiegs steigt die Temperatur an, weil sich die Ozonschicht nähert. Das Ozon wandelt die Sonnenstrahlung in Wärme um, so kommt es zu einem Wärmeaustauch. Die Temperatur nimmt mit zunehmender Höhe zu, sodass der Ballon einen stetigen Temperaturanstieg misst. Die Temperatur steigt hierbei um 9,5 Grad. Der Graph kehrt sich bei rund 20.000 Metern um, als die Ballonhülle geplatzt ist. Zu diesem Zeitpunkt steigt die gemessene Temperatur ins Schwanke gerät und aufgrund der Trägheit des Sensors die Temperaturmessung etwas nachhängt Mit dem Abstieg in der Stratosphäre sinkt sie wieder ab. Der Graph hat zum Ende hin einen starken Temperaturanstieg, da einerseits die Sinkgeschwindigkeit der Sonde in den letzten 15 Minuten zunimmt und andererseits andere Temperaturen im Spreewaldgebiet herrschten. Eine weitere Ursache sind die Wolken, die über dem Spreewald verbreitet sind, denn sie halten die Wärmeeinwirkung der Sonne ab.

³⁹ Vgl. Ribow, Mirko, 2009 S.2

⁴⁰ Vgl. Bayerischer Rundfunk, 2013

⁴¹ Vgl. Deutscher Wetterdienst, 2013

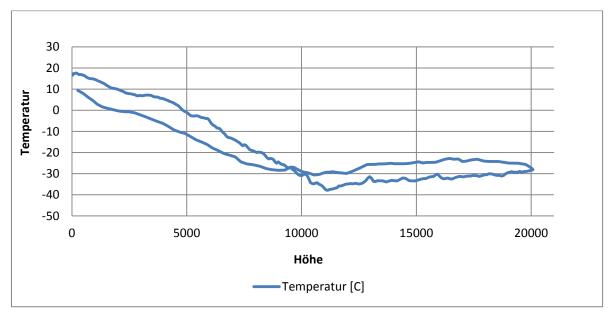


Diagramm 5: Temperatur im Vergleich zur Höhe

Die Temperaturschwankungen sind technisch bedingt. Es treten üblicherweise während der Messung elektromagnetische Störungen auf. In unserem Fall treten Fehler durch Elektronenbewegung und der damit verbunden Wärme, Stromrauschen, elektromagnetische Strahlung sowie durch die Digitalisierung auf. Möglicherweise liegt es u.a. daran, dass an der Sonde Temperatur- und Luftfeuchtesensor nebeneinander liegen.

Berechnung

Die Temperatur ändert sich nahezu linear, sodass wir leicht die Temperaturänderung berechnen können. Sie ist aus der Anfangs- und Endtemperatur berechenbar. Trotzdem sind die Luftschichten zu beachten, in denen sich markant der Temperaturverlauf unterscheidet. Aus den Werten lässt sich die Troposphäre und Stratosphäre festlegen.

Temperaturabkühlung in der Troposphäre:

$$\Delta \vartheta = \vartheta_E - \vartheta_A \rightarrow (-)16.6$$
°C $- 37.9$ °C $= -21.3$ °C

Temperaturerwärmung von Anfang Stratosphäre (11140m) bis Hochpunkt (20077m):

$$\Delta \theta = \theta_F - \theta_A \rightarrow (-)37.9^{\circ}\text{C} - 28.2^{\circ}\text{C} = 9.7^{\circ}\text{C}$$

Temperaturerwärmung zwischen 10958m und Landung:

$$\Delta \vartheta = \vartheta_E - \vartheta_A \rightarrow 9.4^{\circ}\text{C} - 29.6^{\circ}\text{C} = -20.2^{\circ}\text{C} \triangleq 20.2^{\circ}\text{C}$$

In einer Höhe von 2508 m änderte sich der Temperaturanstieg langsamer als zuvor. Das liegt unter anderem daran, dass der Wetterballon zu dieser Zeit (01h 54min) durch eine Wolke sank. Die Tabellenmarkierung zeigt auch, dass der Temperaturanstieg mit sinkender Höhe schwächer wird.

Satz	Zeit	Temperatur	Höhe
339	01:52:20	-4,2	3455
340	01:52:40	-3,1	3208
341	01:53:20	-2,1	2962
342	01:53:40	-1,2	2734
343	01:54:00	-0,8	2508
344	01:54:20	-0,7	2281
345	01:54:40	-0,4	2044

7.2 Luftdruck

Wenn wir uns die gemessenen Werte des Luftdrucks anschauen, dann sind dort zwei Auffälligkeiten. Die erste ist die, dass oberhalb von 15000 m der gemessene Luftdruck stagnierte. Die andere Auffälligkeit ist, dass der Bodenluftdruck am Landeort ungefähr 16 hPa niedriger ist, als am Startpunkt.

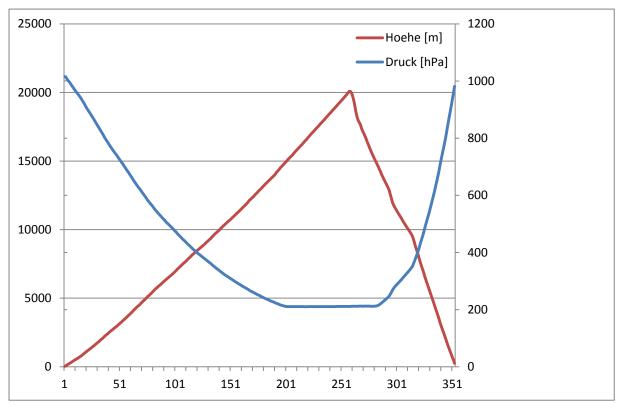


Diagramm 6: Die Höhe (links) und der Luftdruck (rechts) im Verlauf des Fluges (x-Achse: Datensatznummer)

Für die zweite Auffälligkeit kann es mehrere Gründe geben. Der erste Grund ist, dass der Landeort Leipe 18 m höher liegt, als der Startort Stölln. Ein anderer Grund könnte sein, dass Leipe am 27. September 2013 womöglich unter Tiefdruckeinfluss stand, im Gegensatz zu dem ungefähr 150 km entfernten Stölln, was auch die Wolken erklären würde.

Für die erste Auffälligkeit gibt es folgende vier mögliche Fehlerquellen:

- 1. Der genutzte Luftdrucksensor hat (wie bereits im Kapitel 3.2 erklärt) bei Temperaturen von bis zu -40 °C einen maximalen Fehlerbereich von 75 hPa beträgt.
- 2. Der Sensor kann nur Werte oberhalb von 150 hPa messen.
- 3. Der A/D-Wandler arbeitet bei kleinen Spannungen, die aus kleinen Messwerten resultieren, ungenauer.
- 4. Der aus der barometrischen Höhenformel errechnete Luftdruck hängt von der Dichte der Luft am Boden ab, die von der Luftfeuchtigkeit abhängt.

Wenn wir nur mit dem Fehlerbereich und einer veränderlichen Dichte von 0,2p Differenz rechnen, sieht die Berechnung des Luftdrucks folgendermaßen aus:

```
p = 101600Pa \cdot e^{\left(-\frac{1,29\pm0,2\frac{kg}{m^3}9,81\frac{m}{s^2}}{101600Pa} + 20000m\right)} \pm 7500Pa
p = 101600Pa \cdot e^{(-2,49)\pm0,39} \pm 7500Pa
p = [5703,29Pa; 12317,77Pa] \pm 7500Pa
p_{max} = 19817,77Pa
p_{max} = 198,18hPa
```

Der errechnete Wert ist in etwa vergleichbar mit dem, den wir gemessen haben.

7.3 Luftfeuchte

Der Luftfeuchtesensor hat den Flug unbeschadet überstanden. Wie schon im Kapitel 4.2. Mikrocontroller erklärt, wurden die Messdaten alle 20 Sekunden gespeichert. Der jeweilige Messwert ist der Mittelwert aller in 20 Sekunden errechneten und addierten Werte. Die Messwerte sind mit dieser Methode sehr genau. Wir haben aus den Messwerten ein Diagramm erstellt, das den Luftfeuchteverlauf in Abhängigkeit von der Zeit und Höhe zeigt.

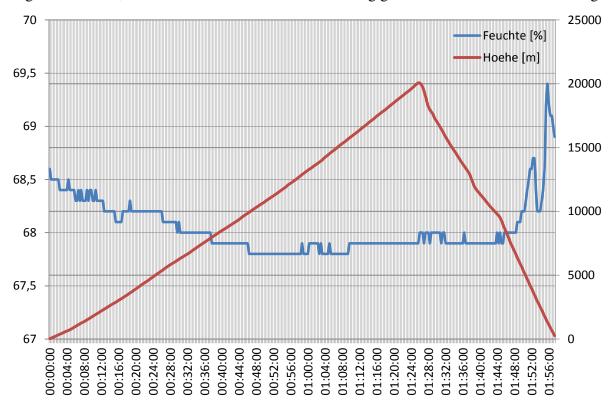


Diagramm 7: Luftfeuchtigkeit (links) und Höhe (rechts) im Verlauf der Zeit

Die Zeitachse (x-Achse) hat eine Längeneinheit von vier Minuten. Die Höhe (rechte y-Achse) hat eine Längeneinheit von 5000 Meter, die relative Luftfeuchte (linke y-Achse) hat eine Einheit von 0,5 Prozent. Wir haben versucht, den Zusammenhang zwischen Höhe und Luftfeuchtigkeit zu verdeutlichen.

Wie dem Diagramm zu entnehmen ist, hat sich die Luftfeuchte relativ gleichbleibend verhalten. Sie bleibt zwischen 67,5 und 69,5 %. Das entspricht so gar nicht unseren Erwartungen. Wir gingen davon aus, dass die relative Luftfeuchte zunächst bis 10.000m

steigt, da bis dahin die Temperatur abnimmt, und dann bis zum Höchstpunkt sinkt. Als der Ballon gestartet ist, betrug die Luftfeuchte 68,6 %. Dann sinkt sie bis 16:40 Minuten auf 68,1 %, wobei kurze Anstiege zwischen 05:40 und 10:40 Minuten zu verzeichnen sind (Schwankungen zwischen 68,4 auf 68,3 %). Bei 16:40 Minuten hat der Ballon eine Höhe von 3159m erreicht. 3159 Meter befinden sich in der Troposphäre, in der sich das Wettergeschehen, also die Wolkenbildung, abspielt.

Bis 10.000 Meter sinkt die relative Luftfeuchte stufenförmig auf 67,8 %, ihrem Tiefstwert. Dieser Wert wurde, bis auf kleine Änderungen, durchweg bis 15.700 Metern, bei 1:09 Stunden, gemessen. Ab dann steigt die Luftfeuchte bis zur Landung.

Als der Ballon geplatzt ist, wurden 67,9 % Luftfeuchte gemessen.

Ab 1:44:40 h steigt die Luftfeuchte stark an, erreicht ihren Höchstwert bei 69,4 %, die Sonde ist fast schon gelandet. Die letzte Messung beträgt 68,9 %.

Die Messdauer hat verglichen mit dem aufgezeichneten Video (der tatsächlichen Zeit) einen Zeitunterschied von + 4:02 min, weshalb die Messwerte nicht exakt sind ($\rightarrow 4.3.2$ Luftfeuchte).

Nun stellen sich die Fragen: War die Luft zu trocken? Sind die Temperaturen frühzeitig gestiegen?

Die Temperaturen haben sich wie erwartet verhalten. Das Konfuse: Die Temperatur und die Luftfeuchte sind gesunken und auch wieder gemeinsam gestiegen. Das ist widersprüchlich und unverständlich. Der Luftfeuchtesensor hat bei den Testläufen stets korrekte Werte gemessen. Doch selbst die geringe Änderung der Luftfeuchtewerte ist beträchtlich. Es handelt sich bei den Messwerten nur um Änderungen in der Nachkommastelle.

Abb. 63: Ab hier beginnt die relative Luftfeuchte wieder zu steigen

Der letzte Teil der Messungen, bei dem die Luftfeuchte steigt, ist verständlich. Die Sonde erreicht die Wolkenschicht, die 99 % des Wasserstoffs enthält, und die Luftfeuchte steigt, wenn auch nur um wenige Prozente. Die Sonde befand sich 47 Sekunden in einer Wolke, wir haben also mindestens zwei Messwerte, mit den Mittelwerten der Feuchtigkeit in

der Wolke. Als sich die Sonde in der Wolke befand, wurden 69,2 % und 69,4 % Luftfeuchte gemessen. Nach der Wolke dauerte der Flug nur noch 1:55 min.

In die Messwerte müssen andere Faktoren als die Temperatur hineingespielt haben. Bei Hinzunahme einer Bodenwetterkarte vom 27.09., dem Tag des Wetterballonflugs, des Deutschen Wetterdienstes, lassen sich Überlegungen bezüglich Hoch- und Tiefdruckgebieten

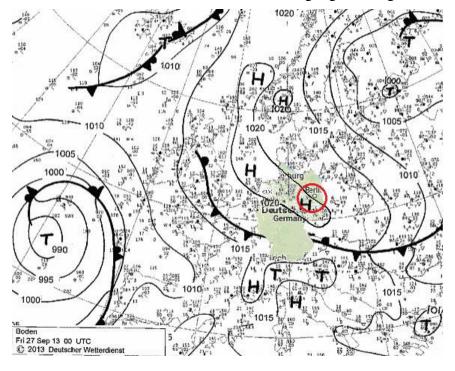


Abb. 64: Karte Europas mit den Isobaren

anstellen. An dem Tag **Ballonstarts** des über Deutschland ein Hochdruckgebiet. Der Ballon hat sich in diesem befunden. Wir hatten Nordwestwind, weshalb das Hochdruckgebiet den Ballon, auch wegen des starken Windes zum Startzeitpunkt, sicher erreicht hat. Die gezeigte Karte zeigt das Wettergeschehen 13:00 Uhr Ortszeit. Wir starteten zu diesem Zeitpunkt. Was nun das Hochdruckgebiet

mit den Messwerten zu tun hat, wird im Folgenden erklärt.

Ein Hochdruckgebiet ist ein Gebiet, dessen Luftdruck im Vergleich zur Umgebung erhöht ist. Es wird auch als Antizyklon bezeichnet. Ein Tiefdruckgebiet, auch Zyklon genannt, weist dagegen einen niedrigeren Luftdruck als seine Umgebung auf. Treffen Hochdruck- und Tiefdruckgebiete aufeinander beziehungsweise strömen die Luftteilchen zwischen den Gebieten, entsteht Wind.⁴²

Das Hochdruckgebiet entsteht, wenn kältere, also schwerere, Luft absinkt. Das großflächige Absinken der Luftmassen führt zu einem Druckanstieg. Die Luft trocknet aus und erwärmt sich. Dieser Ablauf basiert auf thermodynamischen Prozessen.

Um wieder zu einem ausgeglichenen Druck zu kommen, strömt Luft aus den Bereichen höheren Drucks, also aus dem Zentrum des Hochdruckgebiets heraus, in die Bereiche geringeren Drucks. 43 Es kommt in der Höhe zu einer Luftmassenkonvergenz. Die Luft erwärmt sich, die relative Luftfeuchte sinkt entsprechend.

Das ist eine Erklärung für den Luftfeuchteverlauf. Hochdruckgebiete können in unseren Breiten bis in Höhen von 11 bis 12 Kilometer reichen. 44 Die Luftfeuchte unserer Messung sinkt auch nicht mehr bei 10.000 Metern, ist gleichbleibend bis 15.000 Meter. Hier könnte das Hochdruckgebiet zu Ende gewesen sein.

⁴² Vgl. Goruma o.J.

⁴³ Ebd.

⁴⁴ Ebd.

7.4 Strahlung

Die Strahlungspulse wurden während des Ballonflugs gezählt und abgespeichert. So sollten alle zwanzig Sekunden Impulse auf den vorigen Wert addiert werden. Aus den Messwerten ist unglücklicherweise zu entnehmen, dass Fehler aufgetreten sind.

In der siebten Minute springt der Wert von 602 auf 154 gezählten Pulsen. Weitere Fehler sehen genauso aus. Die Datensätze 342- 372 geben sogar eine 0 aus.

Wenn wir die obere Hälfte der Tabelle betrachten, fällt auf, dass es alle sechs Datensätze bzw. alle zwei Minuten zu einer Änderung kommt. Unter der Annahme, dass es jeweils zu kurzen Störphasen gekommen ist, haben wir versucht, die Zähleränderungen, die durch diese kurzen Störungen aufgetreten sind, mit einem Programm herauszurechnen, das entspricht dann der Bezeichnung 'Strahlung adaptiv'.

Wir führen die Messfehler auf weitere Störungen zurück. Bedauerlicherweise waren wohl Strahlungssensor und Funkempfänger nicht ausreichend voneinander geschützt, sodass die Funksignale die empfindliche Photodiode beeinträchtigten. Entsprechende Störungen haben wir bei unseren vorher durchgeführten Tests bereits beobachtet und konnten die Störungen durch die Abschirmung mit Alufolien verhindern. Offensichtich sind trotzdem wieder Störungen aufgetreten. Physikalisch lässt sich die fehlerbehaftete Messung durch Nulleffekt erklären, welcher eine unerklärliche Strahlungseinwirkung auf den Detektor beschreibt.

Eine weitere Einwirkung ist wohl bei der Startvorbereitung aufgetreten, als wir die Sonde mit Klebeband schlossen. Es ist nicht auszuschließen, dass es dabei zu einer elektrostatischen Aufladung kam. In anderen Worten, wir haben mit dem Finger das Klebeband an der Styroporwand festgerieben,

Datensatz	Zeit	Höhe [m]	Strahlung total	Strahlung adaptiv	
1	00:00:00	36	3610	0	
5	00:01:20	217	3510	0	
10	00:03:00	479	3511	1	
16	00:05:00	789	4113	602	
17	00:05:20	856	4113	602	sech
18	00:05:40	923	4113	602	ns gl
19	00:06:00	994	4113	602	sechs gleiche Werte
20	00:06:20	1062	4113	602	e ₩
21	00:06:40	1125	4113	602	erte
22	00:07:00	1188	4614	154	
28	00:09:00	1568	4514	77	
33	00:11:40	2127	4422	78	
40	00:13:00	2409	4431	9	
46	00:15:00	2821	4541	110	
52	00:17:00	3229	4752	211	
58	00:17:00	3690	4862	110	
				9	
64 70	00:21:00	4163 4630	4871 4898	27	
	00:23:00				
76 82	00:25:00	5108	5026	128	
		5588	5054		
88	00:29:00	6016	5183	129	
94	00:31:00	6448	5330	147	
100	00:33:00	6880	5495	165	
106	00:35:00	7353	5705	210	
112	00:37:00	7816	5870	165	
118	00:39:00	8275	5990	120	
124	00:41:00	8703	6107	117	
130	00:43:00	9136	6324	217	
136	00:45:00	9623	6496	172	
142	00:47:00	10088	6567	71	
148	00:49:00	10543	6683	116	
154	00:51:00	10991	6844	161	
160	00:53:00	11457	7013	169	
166	00:55:00	11951	7082	69	
172	00:57:00	12455	7196	114	
178	00:59:00	12966	7355	159	
184	01:01:00	13455	7494	139	
190	01:03:00	13937	7588	94	
196	01:05:00	14522	7679	91	
202	01:07:00	15056	7750	71	
208	01:09:00	15569	7839	39	
220	01:13:00	16644	7862	34	
226	01:15:00	17180	7996	50	
232	01:17:00	17719	8029	25	
244	01:21:00	18794	7996	34	
250	01:23:00	19329	8048	52	
256	01:25:00	19899	8099	51	
262	01:27:00	19437	8130	8	
268	01:29:00	17649	8116	9	
274	01:31:00	16445	8120	4	
280	01:33:00	15276	8128	8	
286	01:35:00	14244	8131	3	
292	01:37:00	13222	8131	0	
322	01:47:00	7615	8176	20	
328	01:49:00	6125	8176	10	
340	01:53:00	3208	8267	96	
346	01:55:00	1787	10464	2197	
352	01:57:00	483	14762	4298	
353	01:57:20	251	14762	4298	
1				<u> </u>	1

Tabelle 4: Messwerte der Strahlungsmessung

die Photodiode reagierte darauf mit einer Pulsmessung. Im Flugvideo hört man, u.a. wegen des starken Windes (bis zu 135 km/h), Geräusche aus der Sonde, die darauf schließen, dass Geräte verrutschten. Dadurch kommt es möglicherweise ebenfalls zu einer elektrostatischen Aufladung am Styropor, auch kann es sein, dass Funksignale, durch das Verrutschen der Alufolie, den Strahlungssensor beeinträchtigten. Die Software kann nicht fehlerbehaftet sein, weil alle Testmessungen dies widerlegen.

7.5 GPS

Dass das GPS funktioniert hat, ist schon beim Schreiben dieser Auswertung ersichtlich. Wir haben unsere Sonde mit der Messapparatur gefunden, und das auf eine sehr genaue Position. Der Höhenverlauf ist schon in den vorherigen Diagrammen nachvollziehbar, nicht aber der Flugverlauf. Während des Ballonflugs nutzten wir die Internetseite aprs.fi, in die die GPS-Daten eingespielt wurden. Anders hätten wir gar nicht den Ballon verfolgen können.

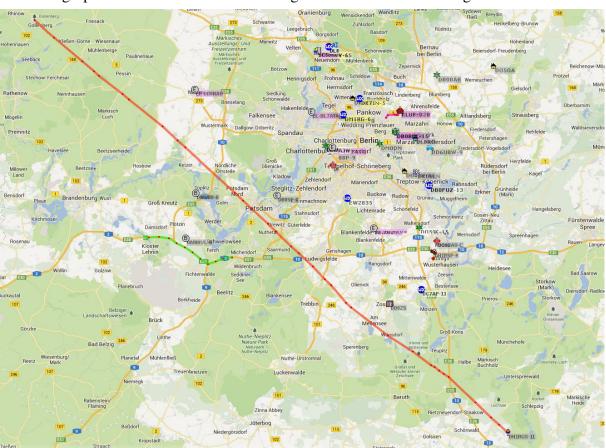


Abb. 65: Der Flugverlauf auf der Internetseite aprs.fi, der Ballon kurz vor dem Spreewald

Damit wir unsere Flugbahn dreidimensional darstellen können, werden die GPS-Daten in Google Earth importiert. Dafür wird eine GPX-Datei (.gpx) erstellt.

Diese muss nur noch in Google Earth hochgeladen werden. Der Nutzer kann nun den gesamten Routenverlauf verfolgen. 45

_

⁴⁵ Die Karte befindet sich aufgrund der Größe im Anhang

Aus den Positionsdaten Breiten- und Längengrad, Höhe und der Zeit lassen sich Steig- und Sinkgeschwindigkeit (vertikale Geschwindigkeit) sowie die horizontale Fluggeschwindigkeit des Ballons berechnen. Das ist so zu verstehen: Der Ballon hat keinen Antrieb, er lässt sich vom Wind und Auftrieb bewegen. Er steigt langsam durch Auftrieb, wird aber schnell zur Seite getrieben (Drift), legt also einen Weg, zweidimensional, wie auf der obigen Karte, zurück. Die vertikale Geschwindigkeit errechnet sich, indem die Höhe durch die Zeit geteilt wird. Das Ergebnis mal 3,6 ($\frac{60\cdot60}{1000}$) und die Geschwindigkeit ist in Kilometer pro Stunde angegeben. Die horizontale Geschwindigkeit dagegen ist nicht auf Anhieb zu berechnen, denn der zurückgelegte Weg in horizontaler Richtung ist uns nicht bekannt. Wie sich die

horizontale Geschwindigkeit errechnet, wird im Folgenden erklärt.

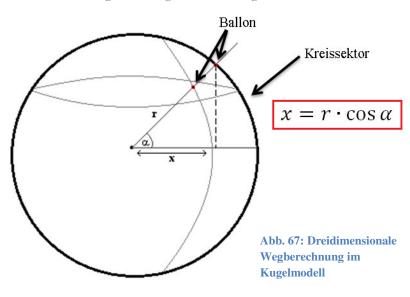

 $\Delta s = \sqrt{\Delta x^2 + \Delta y^2}$

Abb. 66: Berechnung des zurückgelegten Weges aus Längen- und Breitengrad

Aus dem Breiten- und Längengrad wird ein Positionspunkt bestimmt. Die Erdkugel wird in Längengrade und Breitengrade eingeteilt. Der Umfang vom Breitengrad hat immer die gleiche Länge, der Umfang des Längengrads dagegen nimmt vom Äquator zu den Polkappen hin ab.

Der zu einem Winkel gehörende Teilumfang (Kreissektor) wird errechnet mit der Formel

$$b = \frac{\alpha}{360} \cdot u = \frac{2\pi r \cdot \alpha}{360}$$

Es ermöglicht die Bestimmung Position der auf dem Breitengrad. Für r wird der Erdradius eingesetzt. Für u entsprechend der Erdumfang. Er beträgt ungefähr 40.030 $(2\pi r)$. Das b steht für das Bogenmaß. Dieser Teilumfang gibt nur die Länge des Breitengrads an.

Die Position auf dem Längengrad wird über den Kosinussatz berechnet. Der

Umfang in Längenrichtung ist nicht gleichbleibend. Das Szenario muss sich dreidimensional vorgestellt werden. Dabei ist r der Erdradius und x der Weg.

Aus der Differenz der Wegpunkte ergibt sich der zurückgelegte Weg, jeweils des Breitengrads (y) und des Längengrads (x). So kann ein rechtwinkliges Dreieck gebildet

werden. Über den Satz des Pythagoras wird nun der Weg berechnet. Dieser ist nun dreidimensional. Nun kann auch die horizontale Geschwindigkeit berechnet werden durch:

$$\vec{v} = \frac{\Delta s}{\Delta t}$$

Da die GPS-Daten alle zwei Minuten gespeichert wurden, wurden die Daten im Nachhinein interpoliert, dass auch alle 20 Sekunden ein Wert vorhanden ist.

Der Ballon hatte eine Durchschnittsgeschwindigkeit von 76,341 km/h während des gesamten Fluges. Davon bis zum Erreichen des Hochpunktes 74,947 km/h. Dabei erreichte der Ballon eine Höchstgeschwindigkeit von 134,1 km/h. Beim Sinken betrug die durchschnittliche Geschwindigkeit 80,127 km/h. Dabei erreichte die Sonde eine Höchstgeschwindigkeit von 140,7 km/h. Diese Werte geben die horizontale Geschwindigkeit an.

Der Ballon hatte eine durchschnittliche Steiggeschwindigkeit von 13,98 km/h. Die Sinkgeschwindigkeit betrug durchschnittlich 37,56 km/h. Die zuletzt gemessene Steiggeschwindigkeit vor Erreichen des Hochpunkts betrug 16,2 km/h.

8. Persönlicher Nutzen

"Der größte Nutzen für mich war der technische Teil. Vor allem die vielen Stunden, die Georg, Heiko und ich am Löten, Programmieren und Testen verbrachten, haben mir persönlich genutzt. Ich habe viel Neues dazu gelernt, was in der Schule nicht möglich gewesen wäre. In der Schule wird beispielsweise die Elektrotechnik nur kurz behandelt. Das Projekt hat uns in die E-Technik geführt und genügend Wissen gebracht. Auch haben wir uns mit der Programmiersprache beschäftigt. Es ist doch wichtig, zu wissen, wie das System Computer funktioniert. Das Schreiben der Seminararbeit hat mir geholfen, die Zusammenhänge noch besser zu verstehen." Sören

"Der Aufwand, ein Wetterballonprojekt durchzuführen, wurde uns erst zum Projektende richtig klar. Viele Stunden investierten wir darin und sammelten individuelle Erfahrungen. Ich fand nicht nur am Bau der Gerätschaften Begeisterung, sondern auch an der Programmierung, die uns praktisch gut vermittelt wurde. Mit dem Schreiben der Seminararbeit vertiefte ich die Erkenntnisse des Projektzeitraums. Im Ganzen hat mir das Projekt einen interessanten Einblick in die Elektrotechnik gegeben." *Heiko*

"Ich habe während des Projekts und an den vielen Wochenenden, an denen wir uns getroffen haben, vor allem gelernt, dass ich bei praktischer Naturwissenschaft auch Spaß haben kann. Außerdem habe ich aus dem Projekt eine etwas bessere Kenntnis der Programmiersprache "C" und des Lötens mitgenommen. Es war spannend, die Ferien und Wochenenden für das technische und wissenschaftliche Arbeiten genutzt zu haben. Am spannendsten fand ich jedoch das Finale des Projekts mit abheben des Ballons." *Georg*

9. Literaturverzeichnis

ADH Technology Co. Ltd. (2009): "Data Sheet / GP-635 T". Online im Internet unter http://www.adh-tech.com.tw/files/GP-635T-121130.pdf (07.10.2013)

Atmel Corporations (2013): "XMEGA A MANUAL". Online im Internet unter http://www.atmel.com/Images/ doc8077.pdf (11.10.2013)

Bayerischer Rundfunk (2013): "Atmosphären-Aufbau in fünf Schichten". Online im Internet unter http://www.br.de/themen/wissen/meteorologie-wetter-atmosphaere100.html (17.10.2013)

Bernard, Thomas (2010): "Die Realisierung von Schaltern in der Hochfrequenztechnik mittels PIN-Dioden". Online im Internet unter http://www.heuermann.fh-aachen.de/files/knowledge/komponenten_der_hf-technik/HF-Schalter%20mit%20PIN-Dioden.pdf (29.08.2013)

Bernard, Thomas (2002): "Heuermann FH Aachen". Online im Internet unter http://www.heuermann.fh-aachen.de/files/knowledge/komponenten_der_hf-technik/HF-Schalter%20mit%20PIN-Dioden.pdf (05.09.2013)

Bundesministerium der Justiz (2013): "Luftverkehrsgesetz". Online im Internet unter http://www.gesetze-im-internet.de/luftvg/index.html (08.09.2013)

Bundesministerium der Justiz (2013): "Luftverkehrs-Ordnung". Online im Internet unter http://www.gesetze-im-internet.de/luftvo/index.html (08.09.2013)

Burgdorf, H (2004): "Analoge Systeme 1 (ELA4)". Online im Internet unter http://www.krucker.ch/skripten-uebungen/AnSys/ELA4-D.pdf (06.09.2013)

Corporations, A. (2013): "8-bit Atmel XMEGA A Microcontroller" Online im Internet unter http://www.atmel.com/Images/doc8077.pdf (11.10.2013)

Danielak, G. (2006): "Halbleiterphysik"- Tutorium. Online im Internet unter http://www.gdanielak.de/ Tutorium/ET_II/1_Halbleiter/Halbleiter.pdf (05.09.2013)

Danielak, Gregor (2006): "Tutorium Elektrotechnik". Online im Internet unter http://www.gdanielak.de/Tutorium/ET II/1 Halbleiter/Halbleiter.pdf (05.09.2013)

Deutscher Wetterdienst. (2013): "Stratosphäre". Online im Internet unter http://www.deutscher-wetterdienst.de/lexikon/index.htm?ID=F&DAT=Stratosphaere (17.10.2013)

Deutscher Wetterdienst. (2013): "Troposphäre". Online im Internet unter http://www.deutscher-wetterdienst.de/lexikon/index.htm?ID=F&DAT=Troposphaere (17.10.2013)

Deutscher Wetterdienst. (2007): "Vorgehen bei Auffindung eines Radiosondengespanns". Online im Internet unter http://www.deutscherwetterdienst.de/lexikon/download.php?file=Radiosonde.pdf (29.09.2013)

Deutscher Wetterdienst (2013): "Wetterlexikon". Online im Internet unter http://www.deutscher-wetterdienst.de/lexikon/index.htm (04.10.2013)

DomainLoc.com GmbH (o.J.): "Global Positioning System (GPS) Geodätische Anwendung: Vermessung des Maindreiecks". Online im Internet unter http://www.globalpositioningsystem.de/globalpositioningsystem_1.html (21.09.2013)

Franck, Annika (2012): "Planet Wissen". Online im Internet unter http://www.planet-wissen.de/natur_technik/klima/klimawandel/ozon.jsp (01.10.2013)

FSV "Otto Lilienthal" Stölln/Rhinow e.V. (2012): "Die Geschichte unseres Vereins". Online im Internet unter http://edor.org/index.php?id=flugplatz&sub=historie (8.09.2013)

GoPro (2013): "HERO3 + Silver Edition". Online im Internet unter http://de.gopro.com/cameras/hd-hero3-silver-edition (02.10.2013)

Goruma (o.J.): "Hoch- und Tiefdruckgebiete". Online im Internet unter http://www.goruma.de/Wissen/Naturwissenschaft/Meteorologie/hoch_und_tiefdruckgebiete.html (25.10.2013)

HTI Burgdorf (2004): "Analoge Systeme1- Halbleiterdioden". Online im Internet unter http://www.krucker.ch/skripten-uebungen/AnSys/ELA4-D.pdf (06.09.2013)

Köhne, Dr. Anja/ Wößner, Dr. Michael (2008): "NMEA-0183 Daten". Online im Internet unter http://www.kowoma.de/gps/zusatzerklaerungen/NMEA.htm (07.10.2013)

Köhne, Dr. Anja/ Wößner, Dr. Michael (2008): "Positionsbestimmung". Online im Internet unter http://www.kowoma.de/gps/Positionsbestimmung.htm (21.09.2013)

Kuntze; Think Big: Think Big / Think Big. Online im Internet unter: http://www.thinkbig.org/think_big

Kuntze; Projekte: Think Big / Projekte. Online im Internet unter: http://www.think-big.org/projekte

Laquai, Bernd (o.J.): "Herstellung eines Alpha- Beta- Gamma-empfindlichen Strahlungsdetektors auf Basis einer kostengünstigen PIN-Diode". Online im Internet unter http://www.opengeiger.de/ABGDetektor.pdf (29.08.2013)

Meyers Lexikon Redaktion (2001): Meyers Grosses Taschenlexikon: "Lexikon in 25 Bänden" 8., überarb. Aufl., Mannheim, S.285/86, Bibliographisches Institut & F.A. Brockhaus AG.

Michell GmbH Instruments (2013): "Kapazitive Feuchtesensoren". Online im Internet unter http://www.michell.com/de/technologie/kapazitive-feuchtesensoren.htm (04.10.2013)

Motorola: Motorola: SEMICONDUCTOR TECHNICAL DATA

Nmea.de (2011): "NMEA 0813". Online im Internet unter http://www.nmea.de/index.html (07.10.2013)

Pirnay, Jens (o.J.): "Projekt Stratosphäre- What goes up must come down" Online im Internet unter http://pirnay.com/index.php/de/ (29.08.2013)

Reichelt elektronik (2013): "Feuchtesensor KFS 140-FA". Online im Internet unter http://www.reichelt.com/Sensoren/KFS-

140FA/3/index.html?&ACTION=3&LA=446&ARTICLE=82301&GROUPID=3190&artnr=KFS+140-FA (04.10.2013)

Ribow, Mirko (2009): "Druck und Temperaturschichtung in der Atmosphäre" (Ausbildungsseminar Klima und Wetter im WS 09/10)" 2009, S.2

Rosenberg, Martin (2010): "Planet Wissen". Online im Internet unter http://www.planet-wissen.de/alltag_gesundheit/werkstoffe/glas/silizium.jsp (05.09.2013)

Rosenberg, Martin (2010): "Silizium: Grundlage für die Glasproduktion". Online im Internet unter http://www.planet-wissen.de/alltag_gesundheit/werkstoffe/glas/silizium.jsp (05.09.2013)

Schedler, Karl (2001): "Temperatur: Schichtung". Online im Internet unter http://wwwex.physik.uni-ulm.de/marti/Zawiw/Texte/MetElem/wetterelemente2.htm (04.10.2013)

Schönwiese, Christian-Dietrich (2003): "Klimatologie". Stuttgart: Ulmer.

Seilnacht, Thomas (o.J.): "Thorium- Verwendung" Online im Internet unter http://www.seilnacht.com/ Lexikon/90Thori.html (26.10.2013)

Subramanyam, R.R./ Mahajan, Shobhit/ Madhukar, Archana/ Sahay, Suman/ Roonwal, G.S. (2010): Geschichte der Naturwissenschaften von der Antike bis heute, Potsdam: Tandem Verlag, S. 97.

Titz, Sven (2006): "Warum sind beheizte Räume im Winter so trocken?". Online im Internet unter http://www.weltderphysik.de/thema/hinter-den-dingen/winterphaenomene/trockeneraeume/ (03.10.2013)

Wassermann, Eberhard F. (2011): "Navigieren mit Satellit: GPS". Online im Internet unter http://www.weltderphysik.de/gebiet/planeten/erde/gps/ (02.10.2013)

Wikimedia Foundation Inc. (2013): "Thoriumnitrat". Online im Internet unter http://de.wikipedia.org/wiki/Thoriumnitrat (16.09.2013)

Woodman Labs (2013): "Gopro Hero 3 Silver Edition – Akkulaufzeit". Online im Internet unter http://de.gopro.com/cameras/hd-hero3-silver-edition#/technical-specs (02.10.2013)

Woodman Labs: "GoPro Hero 3 Silver Edition- Benutzerhandbuch" 2013, S.22

Volkmer, Martin (2002): "Kernenergie Basiswissen". Informationskreis Kernenergie, Bonn.

Vömel, Dr. Holger. (2007). *Deutscher Wetterdienst (DWD)*. Abgerufen am 7. Oktober 2013 von http://www.dwd.de/sid_bXQ9SSTDmJ17SyZQDQ3yp0dYJM1pYLPxCB30VL0PpcG4 3m7vr2fM!-323405799!1745512398!1381142115218/bvbw/appmanager/bvbw/dwdwww Desktop?_nfpb=true&_pageLabel=_dwdwww_spezielle_nutzer_forschung_physik&T146088 49251144917050626gsbDocumentPath=Navig

Bildnachweis

- Abb. 6: Kreislauf des Wassers (Fotalia.com)
- Abb. 7: Temperaturverlauf in den Luftschichten (http://wwwex.physik.uni-ulm.de/marti/Zawiw/Texte/MetElem/wetterelemente)
- Abb. 8: KFS 140-FA (Reichelt.com)
- Abb. 14: Photodiode BPW-34 (http://www.conrad.de/ce/de/product/153005/Sehr-schnelle-PIN-Fotodiode-Osram-Components-BPW-34-Gehaeuseart-DIL-Abstrahlwinkel-60-400-1100-nm?queryFromSuggest=true)
- Abb. 49: Trimmpotentiometer (http://www.tme.eu/de/details/3386f-1-202lf/tht-potentiometer-1-umdrehung/bourns/)

Selbstständigkeitserklärung

Hiermit erklären wir an Eides statt, die vorliegende Arbeit selbstständig und nur unter Verwendung der angegebenen Quellen erstellt zu haben.

Hello Less Sores Lein

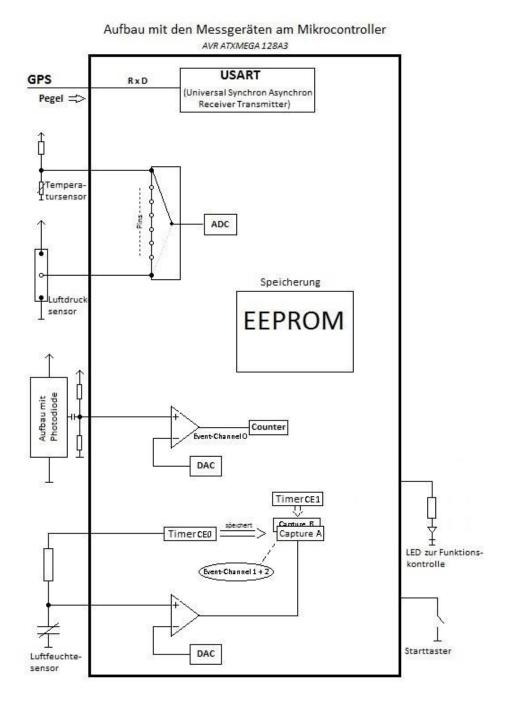
Georg Drechsler

seog Deflu

Heiko Lenz

Sören Lenz

Nauen, 25.11.2013


Danksagung

Ein großer Dank geht an Dirk-Holger Lenz, der uns beim Programmieren und Bauen der Schaltungen unterstützt hat. Ein herzlicher Dank an Steffen Glagow, der sich als Funkamateur bestens in der Funktechnik auskennt, uns diesseits sehr geholfen hat und uns die Funkgeräte zur Verfügung gestellt hat, und auch für allgemeine Fragen zum Wetterballonflug bereit stand. Ein weiterer Dank geht an den Nauener Jugendclub des *MIKADO e.v.*, der uns auf diese Projektidee bzw. dieses Thema der Seminarfacharbeit brachte.

Ein großer Dank geht auch an Herrn Wohlfarth, der leider krankheitsbedingt am Ballonstart nicht dabei sein konnte. Wir danken ihm für seine großzügige Unterstützung während des Projekts und seine Aufgeschlossenheit. Ein Dank geht auch an Herrn Henkler und an die Schule.

Anhang

Schematische Darstellung der Messeinrichtung

Das Schreiben für den Flugantrag

DFS Deutsche Flugsicherung GmbH

Niederlassung Bremen Flughafendamm 45 D-28199 Bremen

Flugantrag für einen Wetterballonstart

Sehr geehrte Damen und Herren,

zwei Klassenkameraden und ich vom Leonardo-da-Vinci Campus Nauen haben vor, im Rahmen einer Seminararbeit einen Wetterballon im Havelland, Brandenburg zu starten.

Der Start ist am 13.08, 20.08. oder 27.08.2013 um 13:00 Uhr vorgesehen, je nachdem welchen Termin Sie freigeben, und erfolgt vom Flugplatz EDOR Stölln/Rhinow, Koordinaten N 52° 44 30 l O 12° 23 30.

Der Ballon mit Nutzlast hat eine Gespannlänge von 10m, der Ballon ist hellbraun (ungefärbt) und hat einen Durchmesser von 2m. Die Nutzlast beträgt inklusive Fallschirm 900g.

Es ist von einer Steiggeschwindigkeit von 5m/s und einer Sinkgeschwindigkeit von 4m/s auszugehen. Der Ballon erreicht eine Höhe von 30.000 - 35.000m.

Versichert ist der Ballon über den Deutschen Amateurradioclub:

Deutscher Amateur-Radio-Club e. V.

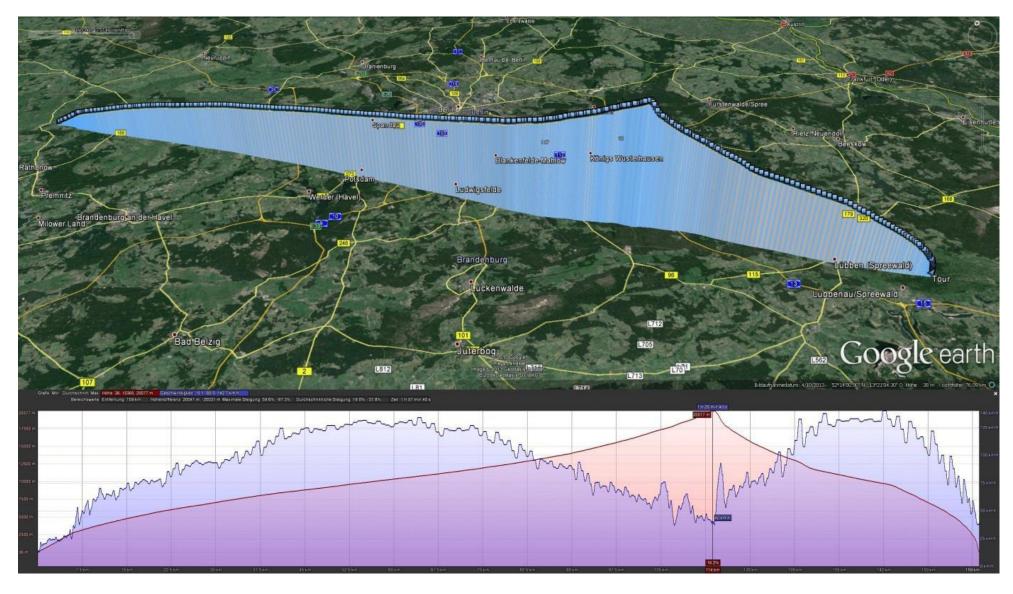
Lindenallee 4

34225 Baunatal

Ich bitte um Ihre Freigabe. Bei einer kurzfristigen telefonischen Freigabe an einem der vorgesehenen Starttermine bin ich mobil erreichbar.

Auflassen von Radiosonden in Stölln Rhinow, EDOR am 13. / 20. oder 27. September 2013

Sehr geehrter Herr Lenz,


für den Aufstieg der Radiosonde in Stölln Rhinow wird hiermit die Flugverkehrskontrollfreigabe gemäß LuftVO § 16a(4) unter folgenden Auflagen erteilt.

Vorhaben: Auflassen einer Radiosonde

Auflassort: Stölln Rhinow (EDOR), PSN 52°44'28"N 012°23'24"E Datum / Ortszeit: 13. / 20. oder 27. September 2013, jeweils 1300 Uhr Ortszeit

Gesamtgewicht: ca. 1 kg
Länge: 10 m
Flugdauer: ca. 2,5 h
Steigrate: ca. 1000ft/min
Sinkrate: ca. 800ft/min
Farbe: hellbraun

Das Vorhaben wird durch eine Navigationswarnung (NOTAM) der allgemeinen Luftfahrt bekannt gemacht.

Flugbahn von Stölln nach Leipe

C-4-	7-14	Dural A/D	Daniel (hDel	T 1 /D	T[C ⁰]	Farrabha A/D	Farrabta [0/]	Hasha [m]	Steig-	Strahlung	Strahlung	Breitengrad	Dunit an area d	Längengrad	1 2	Geschwindigkeit
Satz	Zeit	Druck A/D	Druck [nPa]	Temperatur A/D	remperatur [C]	reucnte A/D	reuchte [%]	Hoene [m]	geschwindigkeit	total	adaptiv	[100000stel]	Breitengrad	[100000stel]	Längengrad	[km/h]
1	00:00:00	3271	1015,6	2628	16,6	1517	68,6	36	0	3610	0	316441	52 44.41000	74295	12 22.95000	0
2	00:00:20	3269	1015	2638	17,3	1516	68,5	55	3,4	3610	0	316441	52 44.39444	74295	12 23.04333	19,5
3	00:00:40	3247	1008,9	2638	17,3	1514	68,5	119	11,5	3610	0	316441	52 44.38778	74295	12 23.07500	6,8
4	00:01:00	3224	1002,5	2642	17,6	1514	68,5	178	10,6	3510	0	316437	52 44.37000	74314	12 23.14000	14,4
5	00:01:20	3209	998,3	2641	17,5	1514	68,5	217	7	3510		316437	52 44.35777	74314	12 23.18832	10,6
6	00:01:40	3189	992,8	2635	17,1	1514	68,5	274	10,3	3510		316437	52 44.33444	74314	12 23.26999	18,2
7	00:02:00	3167	986,7	2633	16,9	1514	68,5	326	9,4	3510		316437	52 44.30000	74314		25,9
8	00:02:20	3147	981,1	2633	16,9	1513	68,4	376	9	3510		316437	52 44.28777	74314		17,2
9	00:02:40	3128	975,8	2632	16,9	1513	68,4	430	9,7	3510	0	316437	52 44.26444	74314		18,2
10	00:03:00	3109	970,6	2629	16,6	1513	68,4	479	8,8	3511	1	316423	52 44.23000	74363	12 23.63000	19,9
11	00:03:20	3090	965,3	2627	16,5	1513	68,4	528	8,8	3511	1	316423	52 44.20110	74363	12 23.71110	19
12	00:03:40	3071	960	2622	16,1	1513	68,4	581	9,5	3511	1	316423	52 44.16111	74363		21
13	00:04:00	3052	954,7	2617	15,7	1513	68,4	624	7,7	3511	1	316423	52 44.11000	74363		23,3
14	00:04:20	3035	950	2613	15,4	1514	68,5	675	9,2	3511	1	316423	52 44.07111	74363		19,4
	00:04:40	3015	944,4	2609	15,1	1512	68,4	730	9,9	3511	502	316423	52 44.03111	74363	12 24.02111	21
16	00:05:00	2994	938,6	2607	15	1510	68,4	789	10,6	4113	602	316399	52 43.99000	74411	12 24.11000	22,6
17	00:05:20	2971	932,2	2606	14,9	1510	68,4	856	12,1	4113	602	316399	52 43.94944	74411	12 24.19444	21,8
18	00:05:40	2947	925,6	2604	14,8	1510	68,4	923	12,1	4113	602	316399	52 43.90777	74411		23,4
19 20	00:06:00	2923 2898	918,9	2602 2597	14,6	1509 1509	68,3 68,3	994 1062	12,8 12,2	4113 4113	602 602	316399 316399	52 43.86500 52 43.82666	74411 74411		25,1 23
-	00:06:20	2874	911,9 905,3	2597	14,3 13,9	1510	68,4	1125	11,3	4113	602	316399	52 43.82666	74411	12 24.48444	23,4
22	00:06:40	2852	899,2	2592	13,9	1510	68,3	1125	11,3	4614		316374	52 43.74000	74411		23,4
23	00:07:20	2830	893	2585	13,4	1510	68,4	1248	10,8	4614		316374	52 43.74000	74467	12 24.67000 12 24.76277	23,9
24	00:07:40	2810	887,5	2582	13,4	1510	68,3	1308	10,8	4614		316374	52 43.64999	74467		24,2
25	00:07:40	2789	881,6	2577	12,8	1509	68,3	1369	10,8	4614	_	316374	52 43.60000		12 24.83444	24,2
26	00:08:00	2767	875,5	2572	12,4	1509	68,3	1432	11,3	4614		316374	52 43.55555	74467	12 25.04777	25,5
27	00:08:40	2744	869,1	2566	11,9	1510	68,4	1499	12,1	4614		316374	52 43.50888	74467	12 25.13944	24,2
28	00:09:00	2720	862,4	2559	11,4	1509	68,3	1568	12,4	4514		316346	52 43.46000	74522		23
29	00:09:20	2697	856	2554	11,1	1510	68,4	1639	12,8	4514	_	316346	52 43.41222	74522		23,6
30	00:09:40	2674	849,6	2548	10,6	1510	68,4	1707	12,2	4514		316346	52 43.36222	74522		22,5
31	00:10:00	2650	842,9	2546	10,4	1509	68,3	1776	12,4	4514		316346	52 43.31000	74522	12 25.44500	21,7
32	00:10:20	2627	836,5	2544	10,3	1509	68,3	1849	13,1	4514		316346	52 43.27111	74522		21,2
-	00:10:40	2603	829,8	2542	10,1	1510	68,4	1919	12,6	4514		316346	52 43.22111		12 25.60278	22,5
34	00:11:00	2580	823,4	2538	9,9	1509	68,3	1991	13	4422	78	316316	52 43.16000	74567		24,5
-	00:11:20	2557	817	2535	9,6	1509	68,3	2058	12,1	4422	78	316316	52 43.10444		12 25.74111	23,5
36	00:11:40	2533	810,3	2531	9,3	1509	68,3	2127	12,4	4422	78	316316	52 43.03777	74567	12 25.80444	25,7
37	00:12:00	2510	803,9	2527	9	1508	68,3	2200	13,1	4422	78	316316	52 42.96000	74567	12 25.86000	28,3
38	00:12:20	2488	797,8	2523	8,7	1507	68,3	2271	12,8	4422	78	316316	52 42.88444	74567	12 25.89000	25,9
39	00:12:40	2466	791,6	2516	8,2	1506	68,2	2341	12,6	4422	78	316316	52 42.81778	74567	12 25.95333	25,7
	00:13:00	2445	785,8	2513	8	1506		2409	12,2	4431	9	316276	52 42.76000		12 26.05000	27,4
41	00:13:20	2423	779,7	2512	7,9	1506	68,2	2481	13	4431	9	316276	52 42.69777	74605	12 26.12999	26,3
42	00:13:40	2401	773,5	2510	7,8	1505	68,2	2554	13,1	4431	9	316276	52 42.64444	74605	12 26.24332	29
43	00:14:00	2379	767,4	2508		1505	68,2	2622	12,2	4431	9	316276	52 42.60000	74605	12 26.39000	33,2
44	00:14:20	2359	761,8	2505	7,4	1504	68,2	2689	12,1	4431	9	316276	52 42.56888	74605	12 26.47000	19,2
45	00:14:40	2339	756,3	2503	7,3	1503	68,2	2753	11,5	4431	9	316276	52 42.51555	74605	12 26.58333	29
46	00:15:00	2319	750,7	2498	6,9	1503	68,2	2821	12,2	4541	110	316244	52 42.44000	74673	12 26.73000	38,9

Satz	Zeit	Druck A/D	Druck [hPa]	Temperatur A/D	Temperatur [C°]	Feuchte A/D	Feuchte [%]	Hoehe Im I	Steig- geschwindigkeit	Strahlung total	Strahlung adaptiv	Breitengrad	Breitengrad	Längengrad	Längengrad	Geschwindigkeit [km/h]
47	00.15.20	2201	745.7	2407	C 0	1502	60.1					•	F2 42 27FFF	 	12.20 05000	
-	00:15:20 00:15:40	2301 2282	745,7 740,4	2497 2500	6,8	1502 1502	68,1 68,1	2887 2952	11,9 11,7	4541 4541	110 110	316244 316244	52 42.37555 52 42.28888	74673 74673	12 26.85999 12 27.02332	34 43,9
_	00:16:00	2262	740,4	2498	6,9	1502	68,1	3021	12,4	4541	110	316244	52 42.28888	74673		53,9
-	00:16:20	2242	729,2	2498	6,9	1502	68,1	3089	12,2	4541	110	316244	52 42.11000	74673		37,2
-	00:16:40	2223	724	2500	7	1502	68,1	3159	12,6	4541	110	316244	52 42.02333	74673		43,9
_	00:17:00	2204	718,7	2502	7,2	1503	68,2	3229	12,6	4752	211	316192	52 41.92000	74771	12 27.71000	50,6
_	00:17:20	2184	713,1	2502	7,2	1503	68,2	3303	13,3	4752	211	316192	52 41.82499		12 27.88333	47,3
-	00:17:40	2163	707,2	2501	7,1	1504	68,2	3378	13,5	4752	211	316192	52 41.71332			54
	00:18:00	2142	701,4	2499	7	1504	68,2	3452	13,3	4752	211	316192	52 41.58500	74771		60,8
56	00:18:20	2120	695,3	2494	6,6	1506	68,2	3530	14	4752	211	316192	52 41.48111	74771	12 28.45000	47,4
	00:18:40	2099	689,4	2490	6,3	1507	68,3	3609	14,2	4752	211	316192	52 41.36944	74771	12 28.64333	54
58	00:19:00	2078	683,6	2490	6,3	1506	68,2	3690	14,6	4862	110	316125	52 41.25000	74887	12 28.87000	60,8
59	00:19:20	2058	678	2487	6,1	1506	68,2	3766	13,7	4862	110	316125	52 41.13444	74887	12 29.07999	57,4
60	00:19:40	2036	671,9	2482	5,7	1506	68,2	3843	13,9	4862	110	316125	52 41.01110	74887	12 29.32332	64,2
61	00:20:00	2015	666,1	2481	5,6	1506	68,2	3924	14,6	4862	110	316125	52 40.88000	74887	12 29.60000	71
62	00:20:20	1995	660,5	2478	5,4	1506	68,2	4002	14	4862	110	316125	52 40.75110	74887	12 29.83000	63,4
63	00:20:40	1974	654,7	2473	5	1506	68,2	4084	14,8	4862	110	316125	52 40.62777	74887	12 30.07333	64,2
64	00:21:00	1953	648,8	2468	4,7	1506	68,2	4163	14,2	4871	9	316051	52 40.51000	75033	12 30.33000	65,1
65	00:21:20	1932	643	2462	4,2	1506	68,2	4246	14,9	4871	9	316051	52 40.38944	75033	12 30.57999	64,6
66	00:21:40	1912	637,4	2457	3,9	1505	68,2	4324	14	4871	9	316051	52 40.27444	75033	12 30.84332	65,7
67	00:22:00	1892	631,8	2454	3,6	1505	68,2	4400	13,7	4871	9	316051	52 40.16500	75033	12 31.12000	66,9
68	00:22:20	1873	626,6	2448	3,2	1505	68,2	4474	13,3	4871	9	316051	52 40.05555	75033	12 31.36333	61,3
_	00:22:40	1855	621,6	2442	2,7	1504	68,2	4543	12,4	4871	9	316051	52 39.94056	75033		65,7
-	00:23:00	1836	616,3	2435	2,2	1504	68,2	4630	15,7	4898	27	315982	52 39.82000	75191		70,1
_	00:23:20	1815	610,4	2423	1,3	1504	68,2	4712	14,8	4898	27	315982	52 39.70222	75191		67,9
-	00:23:40	1795	604,9	2410	0,4	1504	68,2	4792	14,4	4898	27	315982	52 39.57888	75191	12 32.47666	72,3
-	00:24:00	1776	599,6	2401	-0,3	1503	68,2	4869	13,9	4898	27	315982	52 39.45000	75191		76,7
-	00:24:20	1756	594	2396	-0,7	1503	68,2	4945	13,7	4898	27	315982	52 39.34333	75191		69,4
-	00:24:40	1737	588,7	2388	-1,2	1503	68,2	5029	15,1	4898	27	315982	52 39.22000	75191		72,3
_	00:25:00	1717	583,2	2378	-2	1503	68,2	5108	14,2	5026	128	315908	52 39.08000	75367		75,4
	00:25:20	1701	578,7	2369	-2,6	1504	68,2	5182	13,3	5026	128	315908	52 38.94832	75367	12 33.96277	73,8
-	00:25:40	1682 1665	573,4 568,7	2368 2368	-2,7 -2,7	1503 1503	68,2 68,2	5264 5336	14,8 13	5026 5026	128 128	315908	52 38.79999 52 38 63500		12 34.25444	77,1 80,6
_	00:26:00	1649	564,3	2369	-2,7	1503	68,2	5336	14,4	5026	128	315908 315908	52 38.63500 52 38.48110	75367	12 34.54500 12 34.82333	76,3
_	00:26:20	1630	559	2368	-2,0	1502	68,1	5500	15,1	5026	128	315908	52 38.48110	75367		76,3
-	00:26:40	1610	553,4	2362	-3,2	1501	68,1	5588	15,1	5054	28	315908	52 38.33277	75542		77,1
_	00:27:00	1592	548,4	2358	-3,2	1501	68,1	5666	14	5054	28	315819	52 38.04444	75542	12 35.42000	77,6
	00:27:40	1576	543,9	2356	-3,5	1501	68,1	5739	13,1	5054	28	315819	52 37.90444	75542		77,6
	00:28:00	1560	539,5	2352	-3,0	1500		5816	13,1	5054			52 37.77000		12 36.35500	79,7
	00:28:20	1544	535,5	2352				5890	13,3	5054	28	315819	52 37.64666		12 36.64666	73,7
-	00:28:40	1530	531,2	2347		1500		5954	11,5	5054	28	315819	52 37.50666		12 36.95833	78,6
-	00:29:00	1514	526,7	2332		1500		6016	11,3	5183			52 37.35000		12 37.29000	85,2
	00:29:20	1498	522,3	2316		1500		6096	14,4	5183			52 37.20166		12 37.61166	
-	00:29:40	1484	518,4	2308		1499		6166	12,6	5183		315735	52 37.03666		12 37.95333	88,5
	00:30:00	1469	514,2	2301		1500		6238	13	5183	129	315735	52 36.85500		12 38.31500	95,1
	00:30:20	1452	509,5	2291		1499		6318	14,4	5183		315735	52 36.70111		12 38.64777	84,8

Satz	Zeit	Druck A/D	Druck [hPa]	Temperatur A/D	Temperatur [C°]	Feuchte A/D	Feuchte [%]	Hoehe [m]	Steig- geschwindigkeit	Strahlung total	Strahlung adaptiv	Breitengrad [100000stel]	Breitengrad	Längengrad [100000stel]	Längengrad	Geschwindigkeit [km/h]
93	00:30:40	1437	505,3	2289	-8,5	1498	68	6388	12,6	5183	129	315735	52 36.53611	75729	12 38.98944	88,5
94	00:31:00	1424	501,7	2285	-8,8	1498	68	6448	10,8	5330	147	315636	52 36.36000	75934	12 39.34000	92,2
95	00:31:20	1411	498,1	2271	-9,9	1498	68	6526	14	5330	147	315636	52 36.18944	75934	12 39.68610	90,4
96	00:31:40	1396	493,9	2259	-10,7	1498	68	6594	12,2	5330	147	315636	52 36.00777	75934	12 40.04111	94,1
97	00:32:00	1383	490,3	2251	-11,3	1498	68	6659	11,7	5330	147	315636	52 35.81500	75934	12 40.40500	97,9
98	00:32:20	1369	486,4	2238	-12,3	1498	68	6732	13,1	5330	147	315636	52 35.63333	75934	12 40.75889	94
99	00:32:40	1354	482,2	2229	-12,9	1497	68	6802	12,6	5330	147	315636	52 35.45166	75934	12 41.11389	94,2
100	00:33:00	1339	478	2228	-13	1497	68	6880	14	5495	165	315527	52 35.27000	76147	12 41.47000	94,3
101	00:33:20	1324	473,9	2224	-13,3	1497	68	6966	15,5	5495	165	315527	52 35.08833	76147	12 41.82555	94,2
102	00:33:40	1309	469,7	2217	-13,8	1497	68	7042	13,7	5495	165	315527	52 34.90666	76147	12 42.18222	94,4
103	00:34:00	1293	465,2	2212	-14,2	1497	68	7126	15,1	5495	165	315527	52 34.72500		12 42.54000	94,6
104	00:34:20	1279	461,3	2204	-14,8	1497	68	7205	14,2	5495	165	315527	52 34.54555	76147	12 42.87666	90,9
105	00:34:40	1265	457,4	2198	-15,2	1497	68	7279	13,3	5495	165	315527	52 34.36388			94,4
106	00:35:00	1251	453,5	2189	-15,9	1497	68	7353	13,3	5705	210	315418	52 34.18000		12 43.61000	98,1
-	00:35:20	1236	449,4	2177	-16,8	1497	68	7431	14	5705	210	315418	52 33.99722			96,2
108	00:35:40	1222	445,5	2183	-16,3	1497	68	7509	14	5705	210	315418	52 33.81222			99,9
-	00:36:00	1209	441,9	2179	-16,6	1497	68	7582	13,1	5705	210	315418	52 33.62500		12 44.77000	103,6
-	00:36:20	1195	438	2165	-17,6	1497	68	7659	13,9	5705	210	315418	52 33.45666		12 45.14333	94,4
-	00:36:40	1180	433,8	2152	-18,6	1496	68	7740	14,6	5705	210	315418	52 33.27166		12 45.53000	99,9
-	00:37:00	1167	430,2	2147	-19	1496	68	7816	13,7	5870	165	315307	52 33.07000			105,5
-	00:37:20	1153	426,3	2144	-19,2	1496	68	7894	14	5870	165	315307	52 32.87666			102,7
-	00:37:40	1140	422,7	2138	-19,6	1495	67,9	7976	14,8	5870	165	315307	52 32.66666	!	!	108,3
-	00:38:00	1126	418,8	2133	-20	1495	67,9	8053	13,9	5870	165	315307	52 32.44000			114
-	00:38:20	1114	415,4	2136	-19,8	1495	67,9	8128	13,5	5870	165	315307	52 32.25222			101,6
_	00:38:40	1101	411,8	2134	-19,9	1495	67,9	8201	13,1	5870	165	315307	52 32.04222			108,4
-	00:39:00	1089	408,5	2132	-20,1	1495	67,9	8275	13,3	5990	120	315181	52 31.81000			115,3
-	00:39:20	1076	404,9	2125	-20,6	1495	67,9	8353	14	5990	120	315181	52 31.58888			111,8
-	00:39:40	1063	401,3	2113	-21,5	1495	67,9	8429	13,7	5990	120	315181	52 31.34555		12 49.20999	118,8
-	00:40:00	1051	397,9	2099	-22,5	1494	67,9	8500	12,8	5990	120	315181	52 31.08000		12 49.65000	125,9
-	00:40:20	1040	394,9	2093	-23	1495	67,9	8569	12,4	5990	120	315181	52 30.83888			115,4
-	00:40:40	1029	391,8	2095	-22,8	1495	67,9	8635	11,9	5990	120	315181	52 30.59555			118,9
-	00:41:00	1018	388,7	2094	-22,9	1495	67,9	8703	12,2	6107	117	315035	52 30.35000			122,4
\vdash	00:41:20	1006	385,4	2088	-23,3	1495	67,9	8779	13,7	6107	117	315035	52 30.10555	77093	12 51.36666	120,6
-	00:41:40	995	382,3	2072	-24,5	1494	67,9	8850	12,8	6107	117	315035	52 29.85888			124,1
-	00:42:00	984 974	379,3 376,5	2064 2074	-25,1 -24,4	1494 1494	67,9 67,9	8918 8987	12,2 12,4	6107 6107	117 117	315035 315035	52 29.61000 52 29.36555	77093 77093		127,7 122,3
-	00:42:20		-	2074	·			9064								122,3
-	00:42:40	963 952	373,4 370,4	2058	-25,1 -25,6	1494 1494	67,9 67,9	9064	13,9 13	6107 6324	117 217	315035 314887	52 29.11888 52 28.87000		12 53.20444 12 53.67000	124,2
-	00:43:00	952	370,4	2058	-25,6 -25.7	1494	67,9	9136	12.6	6324		314887	52 28.87000		12 53.67000	
	00:43:20	930	367,3	2056	-25,7 -26,2	1493	67,9	9206	14	6324	217	314887	52 28.62222		12 54.13110	125,1
-	00:43:40	930	364,3	2049	-26,2 -26,9	1493	67,9	9284	13,1	6324	217	314887	52 28.37222	1	12 54.60111	128,8
_	00:44:00	906	357,6	2040	-20,9 -27,3	1494	67,9	9357	16,4	6324	217	314887	52 27.88111	1	12 55.54778	
	00:44:40	894	354,2	2035	-27,3 -27,3	1493	67,9	9538	16,4	6324	217	314887	52 27.88111		12 55.54778	
	00:44:40	882	354,2	2034	-27,3 -28,1	1493	67,9	9623	15,3	6496		314887	52 27.83111		12 56.01778	
	00:45:20	870	347,6	2023	-28,1 -28,7	1493	67,9	9623	14,4	6496		314737	52 27.11444		12 56.49000	
-															12 56.96111	131,2
138	00:45:40	859	344,5	2004	-29,6	1493	67,9	9778	13,5	6496	172	314737	52 26.84777	77649	1257.43444	131,

Satz	Zeit	Druck A/D	Druck [hPa]	Temperatur A/D	Temperatur [C°]	Feuchte A/D	Feuchte [%]	Hoehe [m]	Steig- geschwindigkeit	Strahlung total	Strahlung adaptiv	Breitengrad [100000stel]	Breitengrad	Längengrad	Längengrad	Geschwindigkeit [km/h]
139	00:46:00	849	341,7	1994	-30,3	1493	67,9	9848	12,6	6496	172	314737	52 26.57000	·	12 57.91000	134,1
-	00:46:20	838	338,7	1988	-30,8	1493	67,8	9922	13,3	6496	172	314737	52 26.30666	77649	12 58.39444	132,2
-	00:46:40	826	335,3	1986	-30,8	1492	67,8	10004	14,8	6496	172	314737	52 26.04000	77649	12 58.86778	131,3
-	00:47:00	816	332,5	1992	-30,5	1492	67,8	10088	15,1	6567	71	314577	52 25.77000	77933	12 59.33000	130,4
-	00:47:20	807	330	2000	-29,9	1492	67,8	10167	14,2	6567	71	314577	52 25.50166	77933	12 59.79777	130,8
H	00:47:40	796	327	1988	-30,8	1491	67,8	10241	13,3	6567	71	314577	52 25.22999	77933	13 0.25444	130
-	00:48:00	785	323,9	1966	-32,4	1491	67,8	10317	13,7	6567	71	314577	52 24.95500	77933	13 0.70000	129,2
-	00:48:20	775	321,1	1942	-34,2	1491	67,8	10392	13,5	6567	71	314577	52 24.68000	77933	13 1.14777	129,5
-	00:48:40	766	318,6	1936	-34,7	1491	67,8	10468	13,7	6567	71	314577	52 24.40833	77933	13 1.60444	130
-	00:49:00	756	315,9	1934	-34,8	1492	67,8	10543	13,5	6683	116	314414	52 24.14000	78207	13 2.07000	130,5
-	00:49:20	747	313,4	1940	-34,4	1492	67,8	10617	13,3	6683	116	314414	52 23.86999	78207	13 2.53110	130,3
-	00:49:40	738	310,8	1941	-34,3	1492	67,8	10688	12,8	6683	116	314414	52 23.60332	78207	13 3.00111	130,8
-	00:50:00	729	308,3	1932	-35	1491	67,8	10761	13,1	6683	116	314414	52 23.34000	78207	13 3.48000	131,4
-	00:50:20	720	305,8	1927	-35,4	1491	67,8	10842	14,6	6683	116	314414	52 23.06444	78207	13 3.96666	135,4
_	00:50:40	710	303,1	1919	-36	1492	67,8	10918	13,7	6683	116	314414	52 22.79778	78207	13 4.43666	130,9
-	00:51:00	701	300,6	1908	-36,8	1491	67,8	10991	13,1	6844	161	314254	52 22.54000	78489	13 4.89000	126,4
155	00:51:20	692	298,1	1897	-37,7	1491	67,8	11066	13,5	6844	161	314254	52 22.27777	78489	13 5.35166	128,6
156	00:51:40	683	295,5	1894	-37,9	1490	67,8	11140	13,3	6844	161	314254	52 22.02444	78489	13 5.79666	124,1
157	00:52:00	675	293,3	1899	-37,5	1490	67,8	11222	14,8	6844	161	314254	52 21.78000	78489	13 6.22500	119,6
158	00:52:20	666	290,8	1901	-37,3	1490	67,8	11299	13,9	6844	161	314254	52 21.53444	78489	13 6.68111	124,1
159	00:52:40	657	288,3	1903	-37,2	1490	67,8	11378	14,2	6844	161	314254	52 21.28111	78489	13 7.12611	124,1
160	00:53:00	649	286,1	1907	-36,9	1490	67,8	11457	14,2	7013	169	314102	52 21.02000	78756	13 7.56000	124,3
161	00:53:20	640	283,6	1910	-36,7	1490	67,8	11538	14,6	7013	169	314102	52 20.76277	78756	13 7.99944	124,2
162	00:53:40	632	281,4	1921	-35,8	1491	67,8	11623	15,3	7013	169	314102	52 20.49777	78756	13 8.42777	124,4
163	00:54:00	624	279,1	1922	-35,8	1491	67,8	11703	14,4	7013	169	314102	52 20.22500	78756	13 8.84500	124,8
164	00:54:20	616	276,9	1924	-35,6	1491	67,8	11783	14,4	7013	169	314102	52 19.94000	78756	13 9.27888	130,1
165	00:54:40	608	274,7	1930	-35,2	1491	67,8	11863	14,4	7013	169	314102	52 19.67500	78756	13 9.70722	124,5
166	00:55:00	600	272,4	1933	-34,9	1491	67,8	11951	15,8	7082	69	313943	52 19.43000	79013	13 10.13000	119
167	00:55:20	591	269,9	1934	-34,8	1491	67,8	12057	19,1	7082	69	313943	52 19.17500	79013	13 10.55555	121,7
168	00:55:40	581	267,2	1936	-34,7	1491	67,8	12143	15,5	7082	69	313943	52 18.94000	79013	13 10.97555	116,3
169	00:56:00	573	264,9	1935	-34,8	1491	67,8	12209	11,9	7082	69	313943	52 18.72500	79013	13 11.39000	111
170	00:56:20	567	263,3	1936	-34,7	1491	67,8	12293	15,1	7082	69	313943	52 18.48111	79013	13 11.84333	123,4
171	00:56:40	559	261	1938	-34,5	1491	67,8	12372	14,2	7082	69	313943	52 18.24611	79013	13 12.26333	116,3
172	00:57:00	552	259,1	1935	-34,8	1491	67,8	12455	14,9	7196	114	313802	52 18.02000	79265	13 12.65000	109,3
173	00:57:20	544	256,9	1934	-34,8	1491	67,8	12539	15,1	7196	114	313802	52 17.78944	79265	13 13.05333	112,8
174	00:57:40	536	254,6	1937	-34,6	1491	67,8	12624	15,3	7196	114	313802	52 17.56777	79265	13 13.42333	105,9
175	00:58:00	529	252,7	1944	-34,1	1491	67,8	12710	15,5	7196	114	313802	52 17.35500	79265	13 13.76000	99
176	00:58:20	523	251	1955	-33,3	1492	67,8	12797	15,7	7196	114	313802	52 17.12000	79265	13 14.15222	112,2
	00:58:40		249,1					12884	15,7				52 16.89833		13 14.52222	105,9
-	00:59:00	509	247,1	1980		1492		12966	14,8	7355	159	313669	52 16.69000		13 14.87000	99,5
-	00:59:20	501	244,9	1970	·	1491		13047	14,6	7355	159	313669	52 16.47499		13 15.22888	102,7
	00:59:40	494	242,9	1950		1492		13136	16	7355	159	313669	52 16.27332		13 15.56555	96,4
-	01:00:00	487	241	1948		1492		13220	15,1	7355		313669	52 16.08500		13 15.88000	
-	01:00:20	480	239,1	1954		1493		13299	14,2	7355		313669	52 15.88333		13 16.23888	99,7
	01:00:40	474	237,4	1955	·	1493		13368	12,4	7355	159	313669	52 15.68166		13 16.57555	96,4
184	01:01:00	468	235,7	1953	-33,4	1493	67,9	13455	15,7	7494	139	313548	52 15.48000	79689	13 16.89000	93,2

Satz	Zeit	Druck A/D	Druck [hPa]	Temperatur A/D	Temperatur [C°]	Feuchte A/D	Feuchte [%]	Hoehe [m]	Steig- geschwindigkeit	Strahlung total	Strahlung adaptiv	Breitengrad [100000stel]	Breitengrad	Längengrad	Längengrad	Geschwindigkeit [km/h]
185	01:01:20	462	234	1953	-33,4	1493	67,9	13537	14,8	7494	139	313548	52 15.27833	79689	13 17.21555	94,8
-	01:01:40	456	232,4	1951	-33,6	1493	67,9	13616	14,2	7494	139	313548	52 15.07666	79689	13 17.51888	91,6
-	01:02:00	449	230,4	1947	-33,9	1493	67,9	13695	14,2	7494	139	313548	52 14.87500	79689	13 17.80000	88,6
188	01:02:20	444	229	1951	-33,6	1493	67,9	13778	14,9	7494	139	313548	52 14.67000	79689	13 18.12555	95,6
189	01:02:40	438	227,4	1954	-33,3	1492	67,8	13859	14,6	7494	139	313548	52 14.46833	79689	13 18.42888	91,6
190	01:03:00	433	226	1957	-33,1	1493	67,9	13937	14	7588	94	313427	52 14.27000	79871	13 18.71000	87,8
191	01:03:20	426	224	1955	-33,3	1492	67,8	14023	15,5	7588	94	313427	52 14.06999	79871	13 19.00222	89,7
192	01:03:40	419	222,1	1953	-33,4	1492	67,8	14154	23,6	7588	94	313427	52 13.87332	79871	13 19.27222	85,9
193	01:04:00	414	220,7	1959	-33	1491	67,8	14240	15,5	7588	94	313427	52 13.68000	79871	13 19.52000	82,2
194	01:04:20	409	219,3	1965	-32,5	1491	67,8	14326	15,5	7588	94	313427	52 13.45000	79871	13 19.78889	94,6
195	01:04:40	404	217,9	1972	-32	1491	67,8	14420	16,9	7588	94	313427	52 13.25333	79871	13 20.05889	85,9
196	01:05:00	398	216,2	1969	-32,2	1493	67,9	14522	18,4	7679	91	313309	52 13.09000	80033	13 20.33000	77,9
197	01:05:20	393	214,8	1961	-32,8	1492	67,8	14614	16,6	7679	91	313309	52 12.90999	80033	13 20.60055	81,8
-	01:05:40	389	213,7	1955	-33,3	1492	67,8	14696	14,8	7679	91	313309	52 12.76332	80033	13 20.87222	74,2
199	01:06:00	385	212,6	1953	-33,4	1492	67,8	14780	15,1	7679	91	313309	52 12.65000	80033	13 21.14500	67,5
200	01:06:20	382	211,8	1953	-33,4	1492	67,8	14868	15,8	7679	91	313309	52 12.50333	80033	13 21.42777	75,9
-	01:06:40	379	210,9	1953	-33,4	1492	67,8	14960	16,6	7679	91	313309	52 12.35666	80033	13 21.69944	74,2
202	01:07:00	377	210,4	1957	-33,1	1492	67,8	15056	17,3	7750	71	313221	52 12.21000	80196		72,5
	01:07:20	377	210,4	1963	-32,7	1492	67,8	15147	16,4	7750	71	313221	52 12.06333	80196		73,3
-	01:07:40	377	210,4	1964	-32,6	1492	67,8	15228	14,6	7750	71	313221	52 11.91666	80196		71,7
-	01:08:00	377	210,4	1967	-32,3	1492	67,8	15311	14,9	7750	71	313221	52 11.77000	80196		70
-	01:08:20	377	210,4	1967	-32,3	1492	67,8	15393	14,8	7750	71	313221	52 11.60333	80196	13 22.97111	75,2
-	01:08:40	377	210,4	1971	-32	1492	67,8	15477	15,1	7750	71	313221	52 11.45666	80196		71,7
	01:09:00	377	210,4	1977	-31,6	1492	67,8	15569	16,6	7839	39	313133	52 11.33000	80349		68,7
	01:09:20	377	210,4	1980	-31,4	1492	67,8	15665	17,3	7839	39	313133	52 11.19333	80349		70,1
-	01:09:40	377	210,4	1981	-31,3	1493	67,9	15756	16,4	7839	39	313133	52 11.07666	80349		67,4
-	01:10:00	378	210,7	1990	-30,6	1494	67,9	15837	14,6	7839	39	313133	52 10.98000	80349	13 24.29500	65,4
-	01:10:20	378	210,7	1996	-30,2	1494	67,9	15926	16	7839	39	313133	52 10.85000	80349	13 24.57111	71,4
-	01:10:40	377 377	210,4 210,4	1982 1972	-31,2	1494 1494	67,9 67,9	16015 16099	16 15,1	7839 7828	39	313133 313063	52 10.73333 52 10.63000	80349		67,4 63,6
-	01:11:00				-32						39			80510		65,5
-	01:11:20	377 377	210,4 210,4	1966 1968	-32,4 -32,3	1494 1494	67,9 67,9	16178 16275	14,2 17,5	7828 7828	39 39	313063 313063	52 10.51999 52 10.42332	80510 80510	13 25.36444 13 25.62110	61,8
-	01:11:40	377	210,4	1908	-32,3	1494	67,9	16275	17,5	7828	39	313063	52 10.42332	80510	13 25.87000	58,2
	01:12:00	377	210,4	1966	-32,4	1494	67,9	16461	16,6	7828	39	313063	52 10.34000	80510		64,8
-	01:12:40	376	210,1	1964	-32,4	1493	67,9	16552	16,9	7828	39	313063	52 10.24666	80510		61,8
-	01:13:00	370	210,1	1904	-32,0	1493	67,9	16644	16,4	7862	34	313005	52 10.13222	80664	13 26.64000	59
221	01:13:20	377	210,4	1976	-32,1	1493	67,9	16731	15,7	7862	34	313005	52 9.95055	80664	13 26.88555	60,4
-	01:13:40	377	210,4	1979	-31,4	1493	67,9	16820	16	7862	34	313005	52 9.84555	80664	13 27.10888	57,7
	01:14:00		210,4					16917	17,5		34	313005	52 9.73500		13 27.31000	55,4
	01:14:20	377	210,4	1978		1493		17009	16,6	7862	34	313005	52 9.63000		13 27.50000	52,5
-	01:14:40	377	210,4	1979		1493		17096	15,7	7862	34	313005	52 9.52500		13 27.72333	57,7
-	01:15:00	377	210,4	1982	·	1494		17180	15,1	7996	50	312942	52 9.42000		13 27.98000	63,3
	01:15:20		210,4	1983		1494		17268	15,8	7996	50	312942	52 9.31500		13 28.21999	60,5
-	01:15:40		210,4	1983	,	1494		17364	17,3	7996	50	312942	52 9.21000		13 28.49332	66,2
-	01:16:00	378	210,7	1987	-30,8	1493		17450	15,5	7996	50	312942	52 9.10500		13 28.80000	72,1
-	01:16:20	378	210,7	1986	·	1493		17536	15,5	7996		312942	52 8.98000		13 29.12888	79,4

Satz	Zeit	Druck A/D	Druck [hPa]	Temperatur A/D	Temperatur [C°]	Feuchte A/D	Feuchte [%]	Hoehe [m]	Steig- geschwindigkeit	Strahlung total	Strahlung adaptiv	Breitengrad [100000stel]	Breitengrad	Längengrad	Längengrad	Geschwindigkeit [km/h]
231	01:16:40	378	210,7	1986	-30,9	1493	67,9	17630	16,9	7996	50	312942	52 8.87500	80798	13 29.40222	66,2
232	01:17:00	377	210,4	1981	-31,3	1493	67,9	17719	16	8029	25	312879	52 8.79000	80962	13 29.62000	53
-	01:17:20	378	210,7	1984	-31,1	1493	67,9	17805	15,5	8029	25	312879	52 8.69500	80962	13 29.86555	59,6
-	01:17:40	378	210,7	1987	-30,8	1493	67,9	17886	14,6	8029	25	312879	52 8.62000	80962		46,4
_	01:18:00	378	210,7	1991	-30,5	1494	67,9	17966	14,4	8029	25	312879	52 8.56500	80962		33,2
-	01:18:20	378	210,7	1992	-30,5	1494	67,9	18064	17,6	8029	25	312879	52 8.49555	80962	13 30.34666	39,7
237	01:18:40	378	210,7	1997	-30,1	1495	67,9	18157	16,7	8029	25	312879	52 8.42056	80962	13 30.53666	46,4
238	01:19:00	378	210,7	1997	-30,1	1495	67,9	18251	16,9	7962	25	312834	52 8.34000	81076	13 30.76000	53,2
239	01:19:20	378	210,7	1994	-30,3	1494	67,9	18340	16	7962	25	312834	52 8.26222	81076	13 30.96666	49,8
240	01:19:40	378	210,7	1989	-30,7	1494	67,9	18433	16,7	7962	25	312834	52 8.17888	81076	13 31.20666	56,6
241	01:20:00	378	210,7	1988	-30,8	1494	67,9	18516	14,9	7962	25	312834	52 8.09000	81076	13 31.48000	63,5
242	01:20:20	378	210,7	1988	-30,8	1494	67,9	18617	18,2	7962	25	312834	52 8.01222	81076	13 31.77555	66
243	01:20:40	377	210,4	1983	-31,1	1494	67,9	18708	16,4	7962	25	312834	52 7.92889	81076	13 32.01556	56,6
244	01:21:00	378	210,7	1986	-30,9	1494	67,9	18794	15,5	7996	34	312784	52 7.84000	81220	13 32.20000	48,2
245	01:21:20	378	210,7	1997	-30,1	1494	67,9	18882	15,8	7996	34	312784	52 7.75388	81220	13 32.35666	43,2
246	01:21:40	378	210,7	2003	-29,6	1494	67,9	18970	15,8	7996	34	312784	52 7.66221	81220	13 32.51333	44,4
247	01:22:00	379	210,9	2007	-29,3	1494	67,9	19059	16	7996	34	312784	52 7.56500	81220	13 32.67000	45,7
248	01:22:20	379	210,9	2010	-29,1	1494	67,9	19152	16,7	7996	34	312784	52 7.46777	81220	13 32.82888	46,1
249	01:22:40	379	210,9	2008	-29,3	1495	67,9	19243	16,4	7996	34	312784	52 7.37611	81220	13 32.98555	44,5
250	01:23:00	379	210,9	2007	-29,3	1495	67,9	19329	15,5	8048	52	312729	52 7.29000	81314		42,9
-	01:23:20	379	210,9	2008	-29,3	1495	67,9	19416	15,7	8048	52	312729	52 7.20110	81314	13 33.29555	43,7
252	01:23:40	379	210,9	2013	-28,9	1495	67,9	19507	16,4	8048	52	312729	52 7.11777	81314	13 33.44888	42,1
-	01:24:00	379	210,9	2008	-29,3	1495	67,9	19595	15,8	8048	52	312729	52 7.04000	81314	13 33.60000	40,5
254	01:24:20	379	210,9	2011	-29	1495	67,9	19691	17,3	8048	52	312729	52 6.93666	81314		45
-	01:24:40	379	210,9	2013	-28,9	1495	67,9	19791	18	8048	52	312729	52 6.85333	81314		42,1
256	01:25:00	379	210,9	2016	-28,7	1495	67,9	19899	19,4	8099	51	312679	52 6.79000	81406		40,3
257	01:25:20	379	210,9	2019	-28,4	1495	67,9	19987	15,8	8099	51	312679	52 6.73666	81406	13 34.21999	37,4
258	01:25:40	380	211,2	2022	-28,2	1495	67,9	20077	16,2	8099	51	312679	52 6.68333	81406	13 34.39332	39,8
-	01:26:00	380	211,2	2027	-27,9	1496	68	20067	-1,8	8099	51	312679	52 6.63000	81406		42,3
-	01:26:20	381	211,5	2040	-26,9	1496	68	19957	-19,8	8099	51	312679	52 6.59333	81406		33,8
	01:26:40	381	211,5	2057	-25,6	1496	68	19747	-37,8	8099	51	312679	52 6.54000	81406		39,8
-	01:27:00	381	211,5	2064	-25,1	1495	67,9	19437	-55,8	8130	8	312647	52 6.47000	81510	13 35.10000	46,1
-	01:27:20	382 382	211,8 211,8	2066 2076	-25	1496 1496	68 68	19027 18572	-73,8 81.0	8130 8130	8	312647	52 6.40832 52 6.32999	81510 91510	13 35.28333	42,9 49,3
\vdash	01:27:40	382	211,8	2076	-24,2 -24,2	1496	68 68	18572	-81,9 -63,9	8130	8 0	312647 312647	52 6.32999	81510 81510		49,3 55,8
-	01:28:20	382	211,8	2078	-24,2 -24,1	1496	67,9	17962	-63,9 -45,9	8130	0	312647	52 6.23500	81510		42,1
267	01:28:40	383	211,8	2078	-24,1	1495	68	17807	-43,9 -27,9	8130	0	312647	52 6.10055	81510	13 36.09666	49,3
-	01:28:40	383	212,1	2090	-23,6 -23,2	1496	68	17649	-27,9 -28,4	8130	٥	312647	52 6.00000	81632		49,3 56,9
	01:29:20		212,1					17391	-46,4	8116	9	312600	52 5.91055		13 36.53333	53,1
	01:29:40	382	211,8	2077		1496		17178	-38,3	8116	9	312600	52 5.79888		13 36.76666	60,8
_	01:30:00	383	212,1	2076	,	1496		17170	-30,2	8116	9	312600	52 5.66500		13 37.02000	68,7
_	01:30:20	383	212,1	2093		1496		16822	-33,8	8116	9	312600	52 5.55555		13 37.22000	55
-	01:30:40		212,1	2090		1496		16635	-33,7	8116	9	312600	52 5.44388		13 37.45333	60,8
	01:31:00	384	212,3	2095	,	1495		16445	-34,2	8120	4	312533	52 5.33000		13 37.72000	
	01:31:20	383	212,1	2090		1496		16245	-36	8120	4	312533	52 5.21722		13 37.96999	63,7
-	01:31:40		212,1	2080		1496		16035	-37,8	8120	4	312533	52 5.10222		13 38.25332	69,8

									Steig-	Strahlung	Strahlung	Breitengrad		Längengrad		Geschwindigkeit
Satz	Zeit	Druck A/D	Druck [hPa]	Temperatur A/D	Temperatur [C°]	Feuchte A/D	Feuchte [%]	Hoehe [m]	geschwindigkeit	total	adaptiv	[100000stel]	Breitengrad	[100000stel]	Längengrad	[km/h]
277	01:32:00	382	211,8	2071	-24,6	1495	67,9	15829	-37,1	8120	4	312533	52 4.98500	81772	13 38.57000	76
278	01:32:20	382	211,8	2070	-24,7	1495	67,9	15641	-33,8	8120	4	312533	52 4.89222	81772	13 38.85666	66,6
279	01:32:40	382	211,8	2069	-24,7	1495	67,9	15461	-32,4	8120	4	312533	52 4.77722	81772	13 39.14000	69,8
280	01:33:00	382	211,8	2067	-24,9	1495	67,9	15276	-33,3	8128	8	312464	52 4.64000	81942	13 39.42000	73,6
281	01:33:20	383	212,1	2073	-24,4	1495	67,9	15109	-30,1	8128	8	312464	52 4.51388	81942	13 39.70166	71,6
282	01:33:40	383	212,1	2069	-24,7	1495	67,9	14937	-31	8128	8	312464	52 4.36555	81942	13 39.97999	75,7
283	01:34:00	387	213,2	2065	-25	1495	67,9	14773	-29,5	8128	8	312464	52 4.19500	81942	13 40.25500	80,3
	01:34:20	393	214,8	2063	-25,2	1495	67,9	14604	-30,4	8128	8	312464	52 4.07999	81942		66,7
	01:34:40	401	217,1	2062	-25,3	1495	67,9	14415	-34	8128	8	312464	52 3.93167	81942	13 40.79833	75,7
	01:35:00	411	219,9	2062	-25,3	1495	67,9	14244	-30,8	8131	3	312375	52 3.75000	82109	13 41.09000	85,3
_	01:35:20	422	222,9	2062	-25,3	1495	67,9	14053	-34,4	8131	3	312375	52 3.58499	82109	13 41.37499	80,5
-	01:35:40	435	226,5	2064	-25,1	1495	67,9	13880	-31,1	8131	3	312375	52 3.38666	82109	13 41.67332	90,3
-	01:36:00	446	229,6	2061	-25,3	1495	67,9	13715	-29,7	8131	3	312375	52 3.15500	82109	13 41.98500	100,5
-	01:36:20	458	232,9	2060	-25,4	1496	68	13552	-29,3	8131	3	312375	52 2.97888	82109	13 42.22777	77,2
	01:36:40	471	236,5	2060	-25,4	1495	67,9	13386	-29,9	8131	3	312375	52 2.78055	82109	13 42.52611	90,3
_	01:37:00	483	239,9	2057	-25,6	1495	67,9	13222	-29,5	8131	0	312256	52 2.56000	82288	13 42.88000	103,6
-	01:37:20	496	243,5	2058	-25,6	1495	67,9	13062	-28,8	8131	0	312256	52 2.35055	82288	13 43.20610	96,9
	01:37:40	511	247,7	2056	-25,7	1495	67,9	12857	-36,9	8131	0	312256	52 2.11888	82288		110,2
	01:38:00	534	254,1	2034	-27,3	1495	67,9	12552	-54,9	8131	0	312256	52 1.86500	82288	13 44.02500	123,6
-	01:38:20	558	260,8	2016	-28,7	1495	67,9	12255	-53,5	8131	0	312256	52 1.65000	82288	13 44.35110	98,3
_	01:38:40	586	268,6	2000	-29,9	1495	67,9	11962	-52,7	8131	0	312256	52 1.41833	82288	13 44.73277	110,2
-	01:39:00	609	275	2002	-29,7	1495	67,9	11769	-34,7	8131	0	312117	52 1.17000	82517	13 45.17000	122,3
	01:39:20	627	280	2005	-29,5	1495	67,9	11621	-26,6	8131	0	312117	52 0.92999	82517	13 45.57944	116,3
-	01:39:40	642	284,1	2007	-29,3	1495	67,9	11491	-23,4	8131	0	312117	52 0.67332	82517	13 46.04444	128,5
-	01:40:00	656	288	2010	-29,1	1494	67,9	11351	-25,2	8131	0	312117	52 0.40000	82517	13 46.56500	140,7
	01:40:20	671 686	292,2	2008	-29,3	1495	67,9 67,9	11219	-23,8	8131	0	312117	52 0.15444	82517	13 47.03222	126,4 128,5
-	01:40:40	701	296,4 300,6	2008 2003	-29,3 -29,6	1494 1495	67,9	11088 10958	-23,6 -23,4	8131 8131	0	312117 311963	51 59.89778		13 47.49722	
	01:41:00 01:41:20	701	300,6	1996	-30,2	1495	67,9	10958	-23,4	8131	0	311963	51 59.63000 51 59.36777	82796		129,6
-	01:41:20	716	304,7	1996	-30,2	1494	67,9	10823	-24,3	8131	0	311963	51 59.36777	82796	13 48.42388	131,8
_	01:41:40	750	314,2	1991	-30,5	1495	67,9	10578	-20,1	8131	0	311963	51 58.81000	82796	13 49.34500	131,8
-	01:42:20	766	318,6	1990	-30,1	1495	67,9	10341	-24,7	8131	0	311963	51 58.53333		13 49.80333	132,1
_	01:42:40	782	323,1	2004	-30,1	1495	67,9	10408	-23,9	8131	0	311963	51 58.26000		13 50.26500	
-	01:42:40	798	323,1	2004	-29,0	1495	67,9	10283	-22,7	8131	0	311799	51 57.99000	83073		131,5
-	01:43:20	814	332	2010	-29,1	1495	67,9	10137	-22,7	8131	0	311799	51 57.71832	83073	13 51.19332	131,7
-	01:43:40	830	336,4	2010	-29,1	1495	67,9	9915	-21,6	8131	0	311799	51 57.71832	83073	13 51.19332	131,4
-	01:44:00	847	341,2	2018	-28,3	1495	68	9797	-21,0	8131	0	311799	51 57.18500	83073	13 52.13000	131,4
	01:44:20	864	341,2	2039	-27,8	1495	67,9	9669	-21,2	8131	0	311799	51 56.88333			142,4
	01:44:40	883	351,2	2040	-26,9	1496		9521		8131	0		51 56.61500		13 53.08555	131,4
	01:45:00	920	361,5	2021	-28,3	1495	67,9	9273	-44,6	8131	0		51 56.38000		13 53.53000	
-	01:45:20	956	371,5	2020	-28,4	1495	67,9	8980	-52,7	8131	0		51 56.12832		13 53.98555	126,0
	01:45:40	994	382,1	2023	-28,1	1496	68	8695	-51,3	8131	n		51 55.90999		13 54.41888	
	01:46:00	1033	392,9	2030	-27,6	1496	68		-43,2	8131	0		51 55.72500		13 54.83000	
	01:46:20	1073	404	2045	-26,5	1497	68		-46,8	8131	0		51 55.48666		13 55.29666	
	01:46:40	1117	416,3	2055	-25,8	1497	68		-50,4	8131	0		51 55.26833		13 55.73000	
	01:47:00	1169	430,7	2060		1497				8176	20		51 55.07000		13 56.13000	

Satz	Zeit	Druck A/D	Druck [hPa]	Temperatur A/D	Temperatur [C°]	Feuchte A/D	Feuchte [%]	Hoehe imi	Steig- geschwindigkeit	Strahlung total	Strahlung adaptiv	Breitengrad [100000stel]	Breitengrad	Längengrad [100000stel]	Längengrad	Geschwindigkeit [km/h]
323	01:47:20	1216	443,8	2073	-24,4	1498	68	7360	-45,9	8176	20	311507	51 54.86166	83613	13 56.54666	110,5
324	01:47:40	1261	456,3	2104	-22,1	1499	68	7123	-42,7	8176	20	311507	51 54.67333	83613	13 56.92999	100,9
325	01:48:00	1307	469,1	2115	-21,3	1499	68	6886	-42,7	8176	20	311507	51 54.50500	83613	13 57.28000	91,4
326	01:48:20	1357	483	2126	-20,5	1499	68	6629	-46,3	8176	20	311507	51 54.28333	83613	13 57.71888	116,8
327	01:48:40	1408	497,2	2145	-19,1	1500	68,1	6373	-46,1	8176	20	311507	51 54.09500	83613	13 58.10222	100,9
328	01:49:00	1458	511,1	2161	-17,9	1500	68,1	6125	-44,6	8176	10	311394	51 53.94000	83843	13 58.43000	85,1
329	01:49:20	1507	524,8	2185	-16,2	1502	68,1	5895	-41,4	8176	10	311394	51 53.76832	83843	13 58.78555	93
-	01:49:40	1558	538,9	2199	-15,1	1503	68,2	5660	-42,3	8176	10		51 53.62999	83843	13 59.08555	77,2
331	01:50:00	1613	554,2	2215	-14	1503	68,2	5415	-44,1	8176	10	311394	51 53.52500	83843	13 59.33000	61,4
332	01:50:20	1667	569,3	2235	-12,5	1505	68,2	5174	-43,4	8176	10	311394	51 53.35333	83843	13 59.68555	93
333	01:50:40	1722	584,6	2255	-11	1508	68,3	4931	-43,7	8176	10	311394	51 53.21500	83843	13 59.98556	77,2
334	01:51:00	1779	600,4	2265	-10,3	1513	68,4	4692	-43	8171	10	311311	51 53.11000	84023	14 0.23000	61,4
	01:51:20	1838	616,8	2279	-9,3	1516	68,5	4443	-44,8	8171	10		51 53.02166	84023	14 0.50222	63,4
	01:51:40	1901	634,4	2301	-7,6	1518	68,6	4192	-45,2	8171	10		51 52.93333	84023	14 0.71888	53,5
	01:52:00	1962	651,3	2320	-6,2	1520	68,6	3959	-41,9	8171	10	311311	51 52.84500		14 0.88000	44,4
338	01:52:20	2027	669,4	2334	-5,2	1521	68,7	3706	-45,5	8171	10	311311	51 52.73666	84023	14 1.15222	66,7
339	01:52:40	2096	688,6	2348	-4,2	1522	68,7	3455	-45,2	8171	10	311311	51 52.64833	84023	14 1.36889	53,5
340	01:53:00	2164	707,5	2363	-3,1	1513	68,4	3208	-44,5	8267	96	311258	51 52.58000	84153	14 1.53000	40,3
341	01:53:20	2234	727	2377	-2,1	1506	68,2	2962	-44,3	8267	96	311258	51 52.52166	84153	14 1.66333	33,7
342	01:53:40	2302	746	2388	,	1503	68,2	2734	-41	8267	96	311258	51 52.46333	84153	14 1.79666	33,7
	01:54:00	2368	764,3	2394	-0,8	1504	68,2	2508	-40,7	8267	96	311258	51 52.40500		14 1.93000	33,7
344	01:54:20	2438	783,8	2395	-0,7	1509	68,3	2281	-40,9	8267	96	311258	51 52.31333	84153	14 2.11888	49,5
345	01:54:40	2510	803,9	2400	-0,4	1511	68,4	2044	-42,7	8267	96	311258	51 52.25500		14 2.25222	33,7
_	01:55:00	2590	826,2	2409	0,3	1517	68,6	1787	-46,3	10464	2197	311223	51 52.23000	84233	14 2.33000	18,1
347	01:55:20	2674	849,6	2417	0,9	1541	69,2	1548	-43	10464	2197	311223	51 52.22166	84233	14 2.38000	10,7
	01:55:40	2753	871,6	2426	1,6	1545	69,4	1327	-39,8	10464	2197	311223	51 52.21333	84233	14 2.43000	10,7
-	01:56:00	2829	892,8	2443	2,8	1539	69,2	1114	-38,3	10464	2197	311223	51 52.20500	84233	14 2.48000	10,7
350	01:56:20	2906	914,2	2468	4,7	1535	69,1	902	-38,2	10464	2197	311223	51 52.19666	84233	14 2.53000	10,7
_	01:56:40	2991	937,8	2492	6,4	1535	69,1	670	-41,8	10464	2197		51 52.18833	84233	14 2.58000	10,7
352	01:57:00	3071	960	2513	8	1532	69	483	-33,7	14762	4298	311218	51 52.18000	84263	14 2.63000	10,7
353	01:57:20	3148	981,4	2532	9,4	1528	68,9	251	-41,8	14762	4298	311218	51 52.17166	84263	14 2.68000	10,7